
(WORKING PAPER)

The Meaning Potential of Procedurality:
initial considerations on procedural semiotic resources

Daniel Peixoto Ferreira∗

JUL 2015

∗This text was written in the context of the Playing Beowulf and MissionMaker projects, developed in the DARE
Collaborative at the London Knowledge Lab (UCL Institute of Education), under joint supervision of Prof. Andrew Burn
and Prof. Alison Gazzard. Daniel Peixoto Ferreira is a Digital Poetics PhD student at the School of Communication and
Arts of the University of São Paulo (ECA/USP), currently at the UCL IOE as a CNPq Brasil Fellow. More information
at the author’s research blog (7luas.com.br/research) and at the DARE website (darecollaborative.net).

1



Abstract

This text presents initial considerations about the meaning potential of procedurality in digital
media, from the perspective of the designer working in this medium. In simple terms, the procedural
aspect of digital media refers to this medium’s fundamental ability to execute a series of rules
in an autonomous fashion. Procedural authorship allows for unique strategies of representation
and expression, different than in any other traditional medium or language. The objective of this
particular study is to identify and analyze the usage of procedural semiotic resources by the
designers of digital games created using MissionMaker, as well as the availability of such resources
in that software, as a means to discuss the meaning potential of procedurality in a more general
sense. The framework used is the Multimodal Analysis approach, as well as a methodology of my
own, developed in a previous research.

Keywords: procedurality, authorship, expression, multimodal analysis

2



1 Introduction

This text presents initial considerations about the meaning potential of procedurality in digital
media. This is done from the perspective of the designer exercising procedural authorship in this
medium, as opposed to the moment of reception or interaction with the finalized work.

In simple terms, the procedural aspect of digital media refers to this medium’s fundamental ability to
execute a series of rules in an autonomous fashion. This allows for unique strategies of representation
and expression, different than in any other traditional medium or language (the term "traditional" is
used here in opposition to digital media, to refer to previous mediums and languages). Also, because
of its status as a metamedium, digital media allows the materialization of content in a variety of
different languages, such as visual, sound, musical, kinetic and so on.

The concept of procedural authorship is used here specifically in reference to the practice of the
designer or creator dealing directly with procedural content. This is fundamentally different from
the use of procedurality solely as a tool (which is the case of any activity done using a computer, for
example), as we will see later.

In this particular study, the focus will be on digital games created in a software called MissionMaker,
in the context of the Playing Beowulf pilot workshop. The purpose of this workshop was to explore
the Anglo-Saxon epic poem Beowulf via a series of creative exercises in a variety of different languages
and mediums, including drama, improvisational theater, creative writing, drawing, animation, film
and digital games. The analysis of the games involved the observation of the creative process,
analysis of the finalized games (and project files) and conversations with their creators.

By analyzing these games, the objective is to identify and describe the usage of procedural semiotic
resources by the designers using MissionMaker, as well as the availability of such resources in this
particular software, as a means to discuss and investigate the meaning potential of procedurality
in a more general sense.1

MissionMaker is a computer game authoring tool for creative learning, currently in development
at the London Knowledge Lab (UCL IOE). It allows the creation of games composed of different
locations, objects and characters, as well as the definition of rules, behaviors and properties for these
elements.

The tool distinguishes itself from most game authoring software because of its particular workflow,
which allows even new users to have a simple, but fully playable, environment almost immediately. It
is then possible to customize and add new elements gradually, as the program’s interface and features
are explored by the user. This approach makes MissionMaker particularly suitable for educational
purposes.

1A more elaborated description for the concept of meaning potential would be: a particular idea represented by
a creator in the form of an object or experience, and which has the potential to be realized and interpreted by an
audience in a certain context.

3



The poem Beowulf is set in Scandinavia, and it narrates the adventures of the hero Beowulf, as he
helps the tribe of the Danes to protect themselves from a mysterious and horrendous creature known
as Grendel. Beowulf is able to defeat Grendel, bringing the wrath of the creature’s mother, which
is also killed by the hero. We will see later on that the poem features not only an exciting plot,
but also a rich world, with many engaging settings and characters, as well as a particular narrative
style and use of language (the version of the poem used for the workshop was the modern English
translation by Frances B. Grummere).

Overview

The following is an outline of this text, describing the main concepts and themes presented in each
section (section 1 is this introduction).

Section 2 (p. 6) is an introduction to the concept of Procedurality, and the practice of procedural
authorship. This includes a brief presentation of the particular perspectives that other authors have
on this subject, the practices and perceptions of the creators and audience in relation to it and some
of the most common misconceptions regarding this topic, which this study aims to clarify. I also
briefly present the concept of procedurality in a more general sense, before (and outside) digital
media.

Section 3 (p. 16) introduces and presents the Framework and Methodology used for the analysis of
the MissionMaker games, as well as the software itself. This is based on concepts and theories from
the the Multimodal Analysis approach, as well as a methodology of my own.

Section 4 (p. 21) consists of the actual case study analysis, in order to identify and discuss the
procedural semiotic resources in MissionMaker. First, the section presents initial elaborations about
computational logic, relating it to this particular software - this includes concepts such as levels of
abstraction, execution of the code, multiplicity of contributions in the context of digital productions
and the notion of different possible perspectives of analysis.

Next comes the analysis of the software, beginning with the presentation of the user interface from
the perspective of the designer using MissionMaker. I then identify the procedural semiotic resources
available to the designer - which are the Variables and Rules - , as well as those hardcoded in the
software - in the game engine -, and how they are composed into a finished product.

Finally, I further discuss how procedural authorship relates to the creative process in previous
traditional languages and media, based on the Playing Beowulf workshop.2

Section 5 (p. 49), which concludes this text, summarizes the findings derived from the analyses,
presents what I hope to have achieved with this study and proposes further developments.

2The term "hardcoded" refers to elements which are directly included into the program’s main code, which is usually
into de "game engine" (or just "engine"). The "engine", in turn, is usually the part of a program that deals with the
most general - and fundamental - aspects of the experience, such as describing the physics, gameplay, rendering and
representational models. It normally does not contain specific instances of data or assets (such as character models,
sounds or text) - instead, the engine describes how the content is structured, accessed, displayed and so on. As we
will see further on, in the case of a game creation software, elements which are hardcoded into the engine are usually
not available for editing or customizing by the user (the game designer).

4



Some Considerations

The focus of this study, as mentioned before, is on the perspective of the designer, as opposed to
the execution of the code or the reception of the final work by the audience. This doesn’t mean that
these other aspects are not important, or that they are not considered in this study.

The moment of fruition is considered, but mainly (1) as a means to access the perspective of the
creator, the creative process or elements and aspects of the digital production and (2) as imagined
or planned models and affordances, in the mind of the creator.

Also, the main objective of this study is not the specific analyses of the MissionMaker games in
themselves, but what they reveal about the grammar and resources available in this particular
software. This is first and foremost a discussion about how this specific tool allows designers to
exercise procedural authorship, and the meaning potential that may be represented or expressed
through it.

5



2 Procedurality

This section consists of an introduction to the concept of procedurality, its fundamental properties
as well as some common misconceptions. It also includes a brief presentation of how this subject is
approached by other authors in the field, and how they relate to my own research.

In simple terms, procedurality in digital media refers to this medium’s fundamental ability to execute
a series of rules in an autonomous fashion. According to author Janet Murray, procedurality is
"[t]he most important element the new medium adds to our repertoire of representational powers"
(MURRAY, 1997:274). This view is shared by many others, such as Alan Kay, Ian Bogost and
researchers Michael Mateas and Andrew Stern, who state that “procedural authorship is required
to take full advantage of the representational power of the computer as an expressive medium.”
(MATEAS & STERN, 2005:8)3

Game designer and researcher Chris Crawford describes the procedural aspect by comparing it to
static data (CRAWFORD, 1987). On one side, procedurality is based on algorithms or equations,
representing rules, or behaviours. It is dynamic, in the sense that these outputs or behaviours may
be different each time the code is executed, according to its internal logic or other factors, such
as user interaction. Procedurality is the basis for all the operations executed by a computer, from
the high-level functions of software applications all the way down to the operating system and the
hardware logic, including dealing with data, outputs and inputs.

On the other side, static data consists of pure information, such as numbers, tables, images, sound
and text. It is fixed, or linear, in the sense that the content available to the viewer or public is the
same every time.

In MissionMaker, as we will see further on, both approaches are available to the game designer.
On one side, the software allows procedural authorship in creating the rules and behaviours for the
different character and elements of the game. On the other side, it is possible to create and include
static data or assets, such as images, sound files and text. The purpose in this study is to focus on
the procedural approach.

Strictly speaking, despite the fundamental difference between procedural content and static data,
the boundary between them, although meaningful, is essentially arbitrary and not always clear. For
example, procedural content can only be materialized (and thus, made accessible to the audience or
user) indirectly, via content of static nature. So, although the behaviour of the non-player characters
(NPC’s) in a MissionMaker game is procedural, it is communicated via static means - images and
sound. In some types of digital productions, the final product exists solely as static content, such as
an animation, a sound file or a printed drawing. The latter is the case of the output from the "virtual
painter" system Aaron (Harold Cohen, 1973-; Fig. 1, p. 13) - in this kind of situation, since the
authorship happens in a metacreative level, via algorithms, the resulting product is still considered

3Procedurality as a more general concept precedes digital media, as elaborated further on (p. 14). The central
role of procedurality in digital media is discussed in my masters dissertation (FERREIRA, 2011).

6



to be essentially procedural (this is not the case, however, of most digital games, including those
created using MissionMaker).4

Another fact to be taken in consideration is that algorithms (or software) are a type of data as well,
stored in the computer’s memory in the same manner as any other digital file. The difference is that
software data, representing procedural content, is designed to be interpreted by the computer as a
series of instructions to be executed, while static data is not.5

In fact, every procedural content includes static elements in their composition or structure, in some
fundamental level. For example, a rule in a MissionMaker game consists of a simple algorithm which
describes how different elements relate among themselves. The elements themselves, however, are
usually pointers to static content. Eventually it is possible to have a rule as an argument inside
another rule - however, regardless of how many levels of nesting there is, eventually there will be
a static element. Thus, the boundary between what is procedural and what is static is not always
clear (specially in less structured grammars, such as the case of visual language). Nevertheless, it
still holds true that procedurality is fundamentally different from static data.6

Chris Crawford suggests the concept of Process Intensity as a measure to represent the proportion
of procedurality in a given digital content. This shall be discussed further on.

2.1 Particular Perspectives
As mentioned before, the focus of the research presented here is on understanding procedurality as a
language, in a fundamental sense, and from the perspective of the game designer using MissionMaker.
This means that the emphasis is on the algorithms, or rules, where the designer’s intention is
represented or codified, as opposed to either the execution of the code of the game or the moment
of reception, or fruition, of the finished product by the player.

Most authors and researchers in the field of digital media share a similar and compatible definition
for procedurality. However, each tend to adopt a particular perspective or emphasis on the subject,
according to their specific interests or approach. The following is a brief description of the work done
by some of these authors, and how they relate to my own research.

Back in 1997, in the seminal book Hamlet on the Holodeck, Janet Murray described procedurality
as one of the four properties (or affordances) found in digital media, thus distinguishing it from
the other aspects - the participatory (referring to interactivity), the spatial (the possibility of virtual
navigable environments) and the encyclopedic (the capacity to deal with vast amounts and types

4The term "materialized" refers to the form in which the digital production is presented to the audience.
5The term "data" is commonly used as a synonym to "static data". The usage of the term "software" also varies.

Either it is used in opposition to hardware (meaning any element which is not part of the hardware), or specifically in
reference to executable applications (which is how it is used in this text).

6What is being presented here refers to the formal (or structural) difference between procedural and static data.
This means that, in the case of static data, and for the purpose of this classification, the content itself is irrelevant.
For example, in an adventure game, even if a particular line of dialogue from an NPC makes reference to a game
mechanic, or some other procedural element or aspect of the system, that content (textual or auditory) is still static
in a structural sense.

7



of information; MURRAY, 1997). This was done in the context of the author’s research about the
development of new forms of interactive drama and narrative. Murray’s work is particularly relevant
to my research in arguing for the primacy of procedurality, considered by the author to be the property
through which digital media can be established as an expressive medium.

Noah Wardrip-Fruin also deals with the expressive potential of code, although with an emphasis
on digital literature (WARDRIP-FRUIN, 2006). Also, the author is particularly interested in the
moment of execution of the algorithm or program (the "processing"), as opposed to the code itself
(the "procedure"). This subtle - but meaningful - difference is reflected in the terminology adopted
by Wardrip-Fruin, with the term "Expressive Processing" suggesting that the act of expression
(or construction of meaning) happens in the moment of execution of the algorithm. In my own
research, the term used is "Procedural Expression" (or “Procedural Expressiveness"), indicating that
the expressive quality is represented in the procedure itself.

In Ian Bogost’s research, which deals with the rhetorical qualities of videogames, procedurality
is described as allowing the modeling of "real-world behaviors into programmatic representations”
(BOGOST, 2006:13). This is explained by Bogost through his concept of Unit Operations, defined
as arbitrary codifications of particular recurring elements or ideas (in contrast to System Operations,
defined as more rigid, totalizing structures), which applies not only to videogames and digital media,
but also poetry, cinema and other languages. The author is particularly interested in exploring proce-
durality as discourse (or rhetoric), borrowing concepts from Literary Theory, Philosophy, Psychology
and Semiotics, in order to examine the meanings and implications associated to this approach.
Similarly, Lev Manovich’s cultural studies approach emphasizes the context in which algorithms
are created, executed and consumed (MANOVICH, 2001). In that sense, my own research differs
from both Bogost’s and Manovich’s, since I approach procedurality in a more fundamental sense,
discussing the expressive potential of the language, as opposed to particular messages and uses.

ArtistHarold Cohen offers a perspective which is closer to the creator’s point of view, by emphasizing
the actual computational functions, as well as the autonomy of digital media, which allowed the
development of Aaron, the aforementioned “virtual painter" system (COHEN, 2011). Formerly a
painter in a traditional sense, Cohen wrote articles explaining the process of codifying a particular art
style in the form of algorithms. Another study more closely related to the perspective of procedural
authorship is Michael Mateas’ practice-based research, focusing specifically on the use of artificial
intelligence techniques to define character behaviour, as well as narrative structure (MATEAS, 2003a
and 2003b). The result of that research is the interactive drama Façade (Michael Mateas and Andrew
Stern, 2005; Fig. 2, p. 13), still considered to be one of the most impressive and sophisticated
implementations of a procedural narrative.

My own research, as mentioned before, is characterized by a deliberate choice to limit the scope of
investigation to focus on the creative process (instead of the reception or fruition of the final product),
and on the more fundamental aspects of procedurality (instead of particular manifestations or uses
of this approach). Regardless of the differences between these approaches, however, the concept of
procedurality is essentially the same in all of them.

8



2.2 Practices and Perceptions
This study deals specifically with procedural authorship in the game design process using Mission-
Maker. One of the reasons for analyzing this particular aspect of digital media is that there are still
many misconceptions regarding the expressive use of this medium, and how it relates to (and, more
importantly, distinguishes itself from) other traditional forms.

Computer scientist Alan Kay once described digital media as a "metamedium" (KAY, 1984). The
author argues that the most common use of the computer is as a tool to emulate traditional
mediums and languages, which means dealing with static data, as opposed to procedural content.
This means activities such as writing, taking pictures, viewing media (such as movies and music) and
using the internet to communicate, search for content and transmit messages and files. Although
the operations involved in these activities do rely on the procedural aspect of digital media (some in
a more intense manner than others), the content itself consists of static data.7

Whenever the user does deal directly with content that is predominantly procedural, it is usually as a
consumer, and mostly limited to a few very specific categories, the most evident being digital games,
which is the type of productions analyzed in this text. Examples of other kinds of predominantly
procedural content include certain digital artworks, such as the interactive piece For All Seasons
(Andreas Müller, 2004; Fig. 3, p. 13), editorial pieces, such as Cutthroat Capitalism (WIRED, 2009;
Fig. 4, p. 13) and advertisements.

The actual production of procedural content, on the other hand, is mostly concentrated among
professional software developers, designers and programmers. Interestingly, however, there are
particular situations or contexts in which the general user does deal directly with procedural content,
although mostly limited to very simple and specific tasks. For example, creating macros in a word
processor (to automate repetitive operations) or defining email filters (deciding what actions should
be taken to each message according to a series of rules).

However, even in these situations, this doesn’t necessarily mean that the users are acknowledging
the procedural nature of such content. For example, users who creates macros in word processors
don’t necessarily think of themselves as being programmers. Even when experiencing procedurally
based (or generated) content, certain types of audience will still interpret it via the more familiar
grammars of traditional media and languages, such as animation, movies or literature. For example,
some videogame players talk about their gameplay experience via the grammar of cinema, describing
"scenes" (suggesting a static - that is, fixed or linear - sequence of events), as opposed to behaviours,
rules and game mechanics (although this could also be explained by the case of game designers who
themselves rely on the expressive strategies of cinema when creating those experiences).

This is why the topic of procedural literacy must be addressed even in the context of computer
programming and game design courses. It is not enough to have a student mechanically go through
the process of creating environments, characters and rules for a game. It is necessary to make it
clear what is being done, and how the process is different than traditional languages and media.

7There are surprisingly few statistics available about the usage of computers and digital media. Although there are
many studies dealing with specific topics and aspects, and focusing on particular regions and demographics, as of this
writing there is no information on a wider scale available.

9



Of course, there is no "wrong" way to use or enjoy digital media. On the other hand, as mentioned
before, many authors argue that the unique expressive potential of this medium, achieved through
procedural authorship, is still relatively unexplored, both by creators and the audience (this will
be illustrated further when analyzing the MissionMaker games). One of the reasons for that, as I
mentioned before, are some misconceptions and simplifications that exist surrounding this subject,
which we will see next.

2.3 Some Misconceptions
There are many misconceptions that tend to limit or hinder the understanding of the concept of
procedurality, not only among researchers, but also creators working in this field, as well as their
audience. This, in turn, may lead to limitations in the development of this approach to its full
potential, as well as gaps in the way consumers perceive and interpret such digital productions.

The following are some common misconceptions and simplifications that I identified throughout my
research regarding procedurality.

Emphasis on secondary aspects
Certain aspects of digital media tend to be emphasized over procedurality, or associated with the
concept, despite not being essential or even exclusive to it. One of the most evident cases of this
is interactivity, which is an element often found in digital productions, and indispensable in the
case of games. However, although interactivity may allow access to procedural systems, it is not a
fundamental aspect of this medium.

An example of an artwork that does not include interactive elements, while still featuring an expressive
use of procedurality, is the interesting installation Balance From Within (Jacob Tonski, 2012; Fig.
5, p. 13). The work consists of a sofa balanced on one of its feet thanks to an algorithm which,
according to the artist, represents "a kinetic metaphor for the inherent risk in social relations"
(TONSKI, 2014).

Even in digital games, in which interactivity is fundamental and required - it is the only way through
which it is possible to reveal the systems and rules, and to access the content available in a game
-, it is still secondary to the procedural aspect. Interactivity not only depends on procedurality to
exist, but is defined and programmed through it.

This is why the emphasis of this study is not on the interaction itself, but on the procedural systems
(or algorithms) that allow it. For example, in most of the MissionMaker games that were analyzed,
Beowulf - the hero of the story - is represented as a strong character, not only through static elements
(such as visual cues of his physical strength, or textual descriptions of his greatness), but also through
the rules and procedural elements, such as how much damage he can take in combat, how high he
can jump and how fast he can move. The meanings being expressed via these rules and behaviours
exists by themselves, regardless of the particular situations that emerge in each instance of gameplay.

Considering interactivity as secondary to procedurality in a logical sense does not mean that it is less
relevant in an expressive sense. Many researchers, such as Ian Bogost and Lev Manovich, discuss the

10



interactive aspect as a way to approach topics such as ethics, politics and the social role of digital
productions (as well as their impact on those areas). However, although these aspects are important
and must be considered in any research done in this field, they are not the focus of the study
presented in this text. Interactivity is considered here mainly as a means to access procedurality.8

Fixed aesthetics
There is also a particular aesthetics that tends to be associated to procedurality, usually though
qualities such as abstraction, objectivity and complexity. For example, procedural content tends to
be systematical and structured, such as the level design in the videogame Spelunky (Derek Yu, 2008;
Fig. 6, p. 13). However, the procedural approach can also produce results which are more organic
and fluid, such as the dialogue in the aforementioned interactive drama Façade (Mateas and Stern,
2005).

This is reflected in the system of most of the MissionMaker games analyzed in this study. Usually
it is very clear to the player what is the role of each element in the game, and the consequence of
every action or situation. Even the more complex and expressive meanings tend to be represented in
an objective or systematic manner. For example, a rule may state that if the player attacks another
character, it fights back.

However, this is not a limitation of the software’s engine itself, but of the designer’s approach to the
tool. As we will see further on in the game analyses, in some cases the designers were able to create
more subjective and organic behaviours.

Restrictions to specific software and techniques
Another common misconception regarding procedural authorship is that this approach is often
considered to be restricted to specific software applications, tools or even particular techniques.

The programming languages Processing (Ben Fry and Casey Reas, 2001) and Actionscript (Macro-
media Flash), for example, although they tend to be more accessible to inexperienced programmers,
can also be limiting. Procedural authorship is an approach that goes beyond particular programming
languages or applications, which tend to emphasize certain aspects or uses over others.

As mentioned before, this is a particularly important topic in relation to MissionMaker, which is an
educational software for game design and digital media literacy. On one hand, it is productive to
focus on one single tool, at least at first. However, it is also important to constantly keep in mind
the wider perspective - the fact that most of the concepts used in MissionMaker are also valid in
other game creation tools, and even more general purpose software.9

8Miguel Sicart presents a similar argument for the importance of considering user interaction when analyzing
videogames, although in a somewhat radical manner, in his essay titled Against Procedurality (SICART, 2011). While
it is essential to take user reception in consideration when analyzing any digital production, specially those that are
interactive, the study presented here follows the idea that it can also be useful to focus on procedurality itself, its
internal mechanisms and logic.

9The same misconception also happens in a smaller scale, with particular techniques, such as the function for
generating random numbers, for example, considered by many to be synonymous to procedurality.

11



This connects with other misconceptions, which are directly related to - or result from - limiting
procedural authorship to specific software solutions. Since this study is focused on a specific software,
the misconceptions below don’t directly apply. However, as mentioned above, by considering these
concepts, the game designer using MissionMaker may be able to connect this particular experience
to the more general notion of procedural authorship. By doing so, the abilities and theories acquired
using this particular software may be further expanded to other software and programming languages,
and even to different expressive forms.

For example, procedurality in digital media tends to exist in a limited range of categories, such as
generative productions (art and design generated by computer code) or digital games, as well as in
certain particular types of content, such as visual, auditory or textual productions. However, there is
no practical reason for this limitation, since the applications of this approach are virtually unlimited.
For example, consider the striking algorithmic sand sculptures by the artist Jean-Pierre Hérbert (Fig.
7, p. 13).

In procedural authorship, the actual execution of the code also tends to be restricted to certain
particular stages of the creative process. Usually, either it is present as the final product itself (which
is the case of digital games, for example), or in the moment of generating the final product, which is
itself static in nature (such as most types of generative art). However, execution of code can happen
in many other stages of the creative process. For example a custom-made software was used for the
creation of the choreography of the performance Far (Random Dance, 2011; Fig. 8, p. 13) - in this
case, the execution of the code is neither part of the final product nor directly generates it.10

Finally, there are particular aspects or elements of a production in which the procedural approach is
most commonly found, while others tend to be neglected. For example, the movement of characters
in virtual environments is usually mostly defined by static, or predefined, animations, such as a loop
for walking, an animation for picking up an object and so on. The procedural approach tends to be
used only in specific situations, such as when a character suffers some kind of impact (for example,
being hit by a car), in which case a "ragdoll" physics engine is activated.11

10The different stages of the creative process is discussed further on in the context of the Framework and
Methodology section (p. 19).

11Although the procedural approach has been increasingly used to define character’s behaviour in videogames and
other simulations, movements still consist of mostly predefined animations.

12



Figure 1: Theo (Aaron,1992) Figure 2: Façade (Mateas and Stern, 2005)

Figure 3: For All Seasons (Andreas Müller, 2004) Figure 4: Cutthroat Capitalism (WIRED, 2009)

Figure 5: Balance From Within (Jacob Tonski, 2012) Figure 6: Spelunky (Derek Yu, 2008)

Figure 7: Sand Installation (Jean-Pierre Hébert, 2011) Figure 8: Far (Random Dance, 2011)

13



2.4 Procedurality Before Digital Media
The concept of procedurality in a more general sense precedes digital media, and it can be found
in (and related to) many traditional practices, languages and media. Children games or play,
for example, as well as sports, are essentially procedural activities, in the sense that they involve
behaviours and rules.

In the field of poetic expression, Conceptual Art also tends to be procedural in nature, specially
in the type of work known as "statements". These are essentially descriptions of artworks, such
as One Hole in the Ground Approximately 1’ x 1’ x 1’ / One Gallon Water Based White Paint
Poured into this Hole (Lawrence Weiner, 1968) - note how this description (or "statement") is
similar to an algorithm (ALBERRO & STIMSON, 1999). The procedural approach is also present
in improvisational practices, such as in certain types of comedy, musical performance or theater.
For example, in the 1960s, Augusto Boal’s Theater of the Oppressed featured improvised scenes,
procedural systems that the audience could interact with and explore, as a way to deal with local
political and social issues.12

Static textual experiences with basic non-linear structures may also suggest a procedural structure,
such as the combinatorial artwork Cent mille milliards de poèmes (Raymond Queneau, 1961) or the
Choose Your Own Adventure book series. The same can be said of traditional productions that
suggest some type of systemic or algorithmic logic. This is the case of the movie The Terminal
(Steven Spielberg, 2004), which Ian Bogost argues to be "a unit-operational film about themes of
waiting" (BOGOST, 2006:19).13

Another example is the aforementioned poem Beowulf, which features rich descriptions of its story
world and characters. As mentioned previously, the digital games analyzed in this study were created
based on this epic poem.

What makes procedurality different in digital media is the fact that this medium introduces elements
such as autonomy, greater level of control, higher structural complexity and more powerful processing
capabilities - a quantitative increase that leads to a qualitative leap. The combination of these
properties allows for unique representational and expressive strategies, which are distinct from the
ones found in any other medium or language.14

Having said that, there certainly is much in common between the digital and traditional mani-
festations of procedurality. For example, they both share a metacreative quality, a fundamental
grammar and certain strategies of reception. Therefore, the process of understanding procedurality

12Going even further, it is also possible to argue that the creative process itself is procedural in nature, since it
happens via thought processes, which are themselves essentially procedural. I elaborate on that topic in my masters
dissertation (FERREIRA, 2011).

13The Terminal is about a man that, because of diplomatic issues, is forced to live in an airport for several months.
14In theory, a digital production such as the videogame Super Mario Bros. (Nintendo, 1985) could be translated in

the form of a book, in the style of the Choose Your Own Adventure series, for example. The result would be a lengthy
book, with each page containing options for every possible action from the player/reader, as well as all the possible
changes in the game world (including every NPC and variable). However, the difference between reading that book
and playing the original game wouldn’t be just the pace of the experience, but its very nature. Such an experience
probably couldn’t even be originally designed if not in a digital medium.

14



in digital media as a language in itself can certainly benefit from analyzing and identifying parallels
and similarities with traditional practices.

This is reflected in the research presented here, based on the Playing Beowulf project, via the
intersection between the practices of videogame authoring (using the MissionMaker software) and
creative exercises in other media and languages, such as the dramatic improvisation based on the
epic poem Beowulf (which is itself a relatively open text, structured in a semi-systemic manner).
This topic will be elaborated further on in the game analyses (p. 21).

The procedural aspect of digital media affects and influences modern life in many ways. However, to
many people this is still not a clear - or even known - concept. In this section I hope to have provided
a solid enough understanding of procedurality, in which resides digital media’s unique potential for
representation, communication and expression.

The focus of the case study analysis presented here is in how this particular approach for making
meaning is realized in the context of game creation. The following section presents the theoretical
framework and methodology through which this is done.

15



3 Framework and Methodology
The case study analyses of the MissionMaker games, which will be presented in the next section, are
based on two approaches: the concepts and theories from the field of Multimodal Analysis, and a
methodology of my own, developed in a previous research. Each allow approaching the same subject
- the expressive and meaning potential of code - from a different perspective.

The Multimodal approach provides the framework to analyze procedurality as a language (or MODE,
as we will see), side by side to other languages and artforms, which means dealing with "higher" level
functions, such as those present in the software layer, and to the more specific implementations and
uses. My own methodology, on the other hand, developed in the context of my previous research,
allows analyzing digital media via the "lower" level functions of computational logic and hardware,
in a more fundamental sense (FERREIRA, 2011).15

In the following pages I describe these two approaches further, as well as their role in the case study
analyses.

3.1 Multimodal Analysis: procedurality as MODE
One of the main challenges I face on my research is in defining the exact nature of its object of
analysis, procedurality. It is possible to describe many aspects and identify uses, applications and
properties of procedurality itself (as presented in the previous section). However, there are also
multiple perspectives through which it may be approached in terms of its role in the creative process.

During the development of this study, I came in contact with the Multimodal Analysis approach
(JEWITT, 2014). This is a relatively novel research methodology, which provided an interesting
and useful perspective on procedurality. It focuses on meaning, and on the different ways it can
manifest itself across and between different communicative MODES, or languages. This flexibility
allows a broader and more complete framework for analyzing acts of communication, representation
and expression, based on what they actually mean or realize, as opposed to being limited to the
preconceived models and concepts for each language. Although these preexisting models are relevant,
multimodal analysis allows different perspectives which are also important and useful.16

Multimodal analysis is particularly useful in the case of digital media, a medium that is still in its early
stages of development, if compared to the more mature and consolidated traditional medium and
languages. In this study, at first I apply this approach - or rather a simplified subset of its framework
- to analyze specific uses of digital media, as a means to access and investigate the language itself,
its grammar, structure and potential for making meaning.

One of the main concepts used in this study is that of semiotic resources, which comes from the
field of social semiotics. It refers to any element (physiological or technological) which may be used
to communicate, represent or express an idea, message or meaning potential (LEEUWEN, 2005).

15The concept of levels of abstraction is elaborated further in the next section (p. 23). The procedural semiotic
resources, which will also be presented in the next section, can be seen as occupying an intermediary position in this
continuum - “higher" than the lower level functions of machine language (or hardware, for that matter), but "lower"
than specific uses, such as in certain categories or types of creations, or even particular productions.

16The term "MODE" is in uppercase to indicate that it refers to the concept in Multimodal Theory.

16



In the particular context of this study, “semiotic resource" is analogous to the concept of a word
in verbal language, considered as a unit inside a sentence - or, in Semiotic terms, a unit inside a
syntagm.

The notion of treating the choice of MODE as a significant operation in itself is another important
idea from the Multimodal approach. This is particularly relevant when discussing how a MODE
may relate to other MODES, identifying the resources it shares with other languages, as well as
the expressive strategies that are unique to them. This concept also relates to the analysis of the
intentions behind particular creative acts, which in turns influences their expressive potential (this is
discussed further, in the presentation of my own methodology of analysis).

Procedurality as MODE
In this study, the analysis of procedural authorship and meaning making in the context of the
Multimodal framework is done by considering procedurality as a MODE, or language, in itself. This
allows the identification of the semiotic resources which are specific to procedurality, as well as the
ones shared with other traditional languages and forms.

An alternative way of relating procedurality to the concept of MODE, which is not the one used in this
study, is to consider it as a combination of MODES. This can also be described as an "orchestrating
MODE" (BURN, 2013), which basically operates by organizing and presenting content from various
MODES in the same context - spatially, temporally and so on. In that case, procedurality would
involve many MODES coexisting and operating through their own mechanisms and logic (resulting
in a situation more accurately described as "multimedia"). However, the focus of this study is not in
the use of computers as a metamedium (p. 9), but on the meaning potential of the actual procedural
expressive strategies available in this medium.

According to Janet Murray, the expressive use of a medium is achieved by exploring its unique and
fundamental properties and affordances. The expressive form is opposed to the additive form, which
refers to the use of a medium via expressive strategies from previous mediums (MURRAY, 1997).
Murray illustrates this with film, which originally was an additive form, based mainly in the use
of expressive strategies from photography and theater (such as the structure of the sets and the
positioning of actors in the scene, as well as the concepts of composition and framing). After a
period of formal exploration, the language of film eventually developed its own expressive identity.

Similarly, the expressive potential of digital media would not come from directly combining elements
from previous traditional mediums, but by exploring the properties that are unique to computers.
Therefore, in this study, procedurality is not considered to be a combination of MODES, but as a
MODE in itself.17

17There is nothing wrong in using a particular medium as an additive form, or as a metamedium. For example,
nowadays most writers use computers for their work - they are not exploring the full expressive potential of digital
media, but this is irrelevant in this case, since their form of expression is literature.

17



Empirical Research
My research has always involved practical analysis of productions, tools, software and creative process
of artists and creators, as well as conversations with artists and researchers in the field. However,
this has also always been secondary to the theoretical elaborations.

The study presented in this text is heavily based on the empirical analysis of specific case studies
from the game design workshop. As mentioned before, this involved the observation of the creative
process, analysis of the finalized games (and project files) and conversations with their creators (p.
21). However, following my academic background and research experience, this is still mostly a
theoretical and reflective study.

Therefore, Multimodal Analysis is used here in a more general and considerably less detailed manner,
if compared to other studies using the same framework. The interviews and analysis presented here
should be considered through that perspective. The intention is to identify and describe the usage of
procedural semiotic resources in MissionMaker, as a means to investigate and discuss procedurality
in a more general sense.

3.2 Methodology of Analysis for Procedural Authorship
In my masters dissertation, which was the result of my previous research, I did an initial investi-
gation on procedural authorship (or “procedural poetics"), defined as artistic manifestations based
fundamentally on the programmability and autonomy of digital media.

I also examined how these specific creative practices, due to their aspect of self-reflection, can serve
as a glimpse into the artistic thinking, as well as the fundamental role of these procedural strategies
of creation in the consolidation of the digital medium as an independent expressive form (FERREIRA,
2011).

Part of that research consisted in defining a methodology of analysis, as a means to identify and
examine the manifestations of procedurality in a given production or object (and its different elements
and aspects) and in the creative process (and its different stages). This was applied to creative
and artistic productions in a wide range of styles and categories, from installation and web art to
performance and computer games.

The study presented here makes use of some of the concepts and theoretical tools developed in that
previous research.

The methodology of analysis involves identifying the different influences and contributions present
in a given art production. The framework includes an initial proposal for a classification of the
different layers involved in the creative process in digital media. These go from the most fundamental
elements and properties of the physical world (including the body and the mind of the artist), to the
social and institutional aspects, including science and formal knowledge, the simple mechanical and
electronic tools and machines, all the way up to digital media.

18



This structure, although not meant to be a definitive or comprehensive description, provides a starting
point to identify and analyze the different influences and contributions to each stage and element
involved in a creative production (both external and internal to the creator or artist). Due to its
scope, this classification also allows relating the procedural expressive strategies to other creative
and artistic manifestations, and even to other human activities.18

The methodology includes a series of perspectives of analysis through which the procedural
creative and expressive strategies can be investigated, to be applied in parallel to the aforementioned
classification of layers of influences and contributions. This allows an objective description of the
elements involved in each one of the different stages of the creative process.

Among these different possible perspectives is the consideration of the different individual elements
and properties of a certain production (or in a certain creative process), as well as the influences and
relationships between them, and their role in the artist’s creative or poetic intention. For example,
the expressive qualities of a work of literature are not influenced by its physical format of presentation,
at least not as much - or in the same way - as in sculpture. In the context of digital media, and
particularly in computer games, this approach allows identifying how the procedural elements of
the system contribute (or not) to the expressive qualities - or meaning potential - of a particular
production.19

Another perspective of analysis is to consider the different stages of the creative process, from the
initial insight or idea in the creator’s mind, going through the conceptual and practical tools used
and finally the end product in itself (be it an object, a software, a performance and so on).

In the case of procedural authorship, it can be found (or applied) in three different moments in
the creative process: (1) it can be an intermediary step in the creation of the final product (such
as in most types of generative art - for example, an algorithm that generates a static image); (2)
procedural strategies may be used as an auxiliary tool in the creative process, but not directly in the
creation of the final output (for example, a dance performance based on a choreography composed via
procedural tools); or (3) the output itself may be procedural, which is the case of any software-based
production, such as digital games.20

This methodology may also allow mapping the creative or poetic intentions behind a particular
production. In the case of digital media, this is a specially complex process, since there are many
different elements, aspects and stages, as well as contributions, involved - this topic is elaborated
further in the next section, when discussing meaning in digital media (p. 26).

18As mentioned before, despite the potential complexity of such an endeavor, the intention of this classification is
not to provide a definitive or complete description, but to allow a framework on top of which further analysis and
reflections can be developed.

19Of course, creators and artists are free to define their own approach to a particular language, which may lead to
interdisciplinary (or multimodal) endeavors, or even to novel forms and languages. The proposed analysis still stands,
and allows identifying and understanding these particular manifestations.

20The separation of the creative process in these three stages is not rigid or absolute. For example, the third
situation described in this paragraph could be considered as a particular instance of the first one, considering a
distinction between the execution of the software and the algorithms themselves that compose the software (textual,
and therefore essentially static). This topic is also discussed previously in this text, when presenting the common
misconceptions related to procedurality (p. 12).

19



The concept of Process Intensity (or Procedural Intensity) proposed by game designer and theorist
Chris Crawford, mentioned previously in this text, is also useful in this methodology, since it allows
referencing the proportion of procedurality in a given digital content, in relation to static data
(CRAWFORD, 1987).

We have seen that the difference between procedural content and static data is essentially arbitrary,
and that procedural content will always include static elements in their fundamental composition
or structure. Therefore, the measure of Process Intensity must also be considered when analyzing
the meaning potential of procedural elements (or semiotic resources) in a digital production. This
allows a clearer understanding of the languages (or MODES) involved, as well as the different types
of expressive strategies available (from the perspective of the creator or designer) or the repertoire
required for its fruition (in the case of the audience or user).

This section presented the main concepts and theoretical tools which were used in the case study
analysis, either indirectly, as a guide to identify relevant aspects and elements to be considered, or in
a more direct and practical manner. The analyses themselves are presented in the following section.

20



4 Case Study Analyses

The object of the case study analyses presented in this section are the computer games created in
the context of the Playing Beowulf pilot workshop, as well as the creative process itself, including
the MissionMaker software. The objective is to identify and analyze the use of procedural semiotic
resources by the creators of these games, as well as the availability of such resources in this particular
software, as a means to discuss and investigate the meaning potential of procedurality in a more
general sense. The framework used, as described in the previous section, is the Multimodal Analysis
approach, as well as a methodology of my own.

In the Playing Beowulf pilot workshop, student teachers from the English and Drama programmes
were encouraged to explore the poem Beowulf via a series of creative exercises in a variety of
different languages and mediums, including drama, improvisational theater, creative writing, drawing,
animation, film and, finally, digital games, using the software MissionMaker (Fig. 9, below).

Figure 9: Workshop: languages and mediums explored

Each participant (or group) in the workshop was instructed to use MissionMaker to create a game
based on a particular section or situation from the poem. The objective was to explore game
mechanics as a representational medium in itself, through its own unique expressive strategies.

The version of MissionMaker used in this study was developed before the Playing Beowulf project,
and therefore the software features a more general set of tools and assets to the users. At the time of
this writing, there is a new version currently being developed, which is customized to this particular
project, including characters, objects and settings, as well as behaviours related to the Beowulf story
and poem. For example, there is a specific character creator system being developed for Grendel and
his mother, as well as a sword fighting mechanic. A different interface is also being implemented, to
fit with the particular workflow expected for the software’s usage in schools, museums and exhibition
settings.

The Playing Beowulf pilot workshop involved two days of activities. The first day included all of the
aforementioned traditional creative exercises, while the second day was dedicated exclusively to the
game creation activity.

According to several of the participants, dealing with the more traditional (and familiar) languages
and mediums first allowed them to get familiar with Beowulf’s story world, narrative and characters,
as well as to build their own image and perspectives about the original text. That way, on the second
day they could focus more attention on learning the MissionMaker tool.

21



Of particular interest to this study are the intersections between the traditional activities and the
game design exercise. As we will see further on in this section, by considering the shared semiotic
resources between the creative process in using MissionMaker and in the other exercises in the
workshop, it is possible to better understand the particularities of procedural authorship in relation
to other traditional languages and forms.

In this section I first present the Procedural Semiotic Resources identified in the MissionMaker
software, then I discuss the process of Composition, through which the resources are combined to
form the finished game. Finally, I develop further how the process of Comparing MODES may help
to further investigate the particularities of this process, by identifying and comparing shared semiotic
resources between game design process in MissionMaker and the other creative activities from the
Playing Beowulf pilot workshop.

The analysis of the games involved the following steps: observing the creative process during the
workshop, examining the finalized projects (as well as their files in the editor) and interviewing
the creators. The games were selected for the analysis according to how well they reflect their
designer’s understanding of the tools and functions provided by MissionMaker, as well as their level
of completion, regarding structure, functionality and amount of detail.

After the workshop, I played the games, and analyzed them, as well as the project files in the editor.
Individual meetings with the creators of the games were then held, in which we played the games and
discussed their experience in the workshop. This process was documented in two articles (FERREIRA,
2014a and 2014b).21

21It should be noted that all of the participants featured in this study are female, except for one. Although in the
workshop there were some male participants, they were very few.

22



4.1 Procedural Semiotic Resources
The concept of semiotic resources is associated with the communication, representation or expres-
sion of meaning potential (p. 16). Since this study is interested on the meaning that is expressed
through procedural means, the focus is on the “procedural semiotic resources".22

As explained previously, procedurality can be defined in relation to static data (p. 6). While
static data represents information directly, via words, numbers, tables, images, sound and so on,
procedurality represents rules or behaviours. While traditional creators use static elements in their
work, artists exploring the expressive potential of digital media use procedural strategies - in a recent
interview, artist Casey Reas, co-creator of the programming language Processing, declared: "I work
with statements, variables, loops, conditionals, functions, objects, and arrays." (REAS, 2015)

A straightforward example of a procedural element in MissionMaker is a rule that says that a door
must open if the player touches it - this is a dynamic behaviour. The actual door object, on the
other hand, is an example of an element that is not procedural - it is static. However, as mentioned
earlier, this distinction is not always so rigid, specially from the perspective of semiotic resources, as
we will see later in this section.

In the following pages I introduce some concepts of computational logic, as well as some other relevant
initial elaborations. I then present the procedural semiotic resources identified in MissionMaker, which
can be used by the designer to exercise procedural authorship. Finally, I also present the particular
set of resources that are exclusive to the software’s engine.

Initial Elaborations

Levels of Abstraction Digital games are a particular type of computer program. As such, they
are compiled from algorithms, which consists of a series of instructions that represent a particular
abstraction of a process, much like a map is an abstraction of a place. A same place can have
many maps, each one providing a certain view or perspective. One may emphasize the different
types of terrain, another may present borders and some other may even show an artistic subjective
interpretation of that same place.

Algorithms are the same, in the sense that a single subject may be represented in a variety of different
ways, according to the particular perspectives and purposes of the designer (or programmer). How-
ever, unlike a map, a computer program allows the representation of systems, rules and behaviours,
in a procedural manner.

There can be many levels of abstraction, counting up from the original object or concept that is
being represented. So, in the example of the map, considering the actual location as the original
object, a low-level abstraction could be a realistic 3D representation of the region, a medium-level
abstraction could be a typical 2D map (with roads, borders and so on) and a possible higher-level
abstraction could be a pie-chart representing the proportions between different kinds of terrains - note
how, as the "map" became more abstract, direct elements and aspects from the original object were

22Following the analogy with verbal language, the building of the sentence itself (which happens within a particular
Grammar - in this case, specific to MissionMaker) would be the act of composition, which will be presented further
on in this section (p. 42).

23



removed or diminished, while certain more specific elements or aspects were emphasized (the last
"map", for example, has no information of the actual shape of the terrain, but it contains potentially
useful information that is not present in the previous maps).

In digital media, the lowest level of abstraction is usually considered to be machine language, which
gives access to the hardware logic. Going up, there are the higher level programming languages, which
provide additional abstractions for dealing with machine language, and eventually the application
software, which provide even higher levels of abstraction, usually through advanced visual interfaces.
On one hand, each of these new levels of abstraction provide a particular type of view and access
to the computer’s internal mechanisms. On the other hand, they also limit access to the levels that
are underneath. Levels of abstraction are not a rigid definition, and there are no clearly defined
boundaries between what is considered to be a low or a high level of abstraction (or any intermediary
levels, for that matter).

The concept of levels of abstraction will be useful throughout this section, for describing and analyzing
the different kinds of procedural semiotic resources in MissionMaker.

Executing Meaning Procedural semiotic resources are always represented as code (or algorithm)
in the memory of the computer. However, the actual resources are not the pieces of code themselves,
but their effect in the execution of the program, or system. In other words, the meaning potential
in a particular procedural semiotic resource is not its specific implementation in a certain program,
line of code or function, but in its design, or logic. This is apparent by considering that a same
procedural semiotic resource (such as a rule or behaviour) may be implemented in multiple ways,
using a variety of different programming languages, approaches and techniques.23

As mentioned before, a certain procedural semiotic resource can only produce meaning in the context
of the execution of its code. This can be directly, through the materialization of some kind of output
that can be perceived by the user or audience (as shown further on in this section), or indirectly, by
influencing other functions or procedural semiotic resources contained in the system or program.24

This reflects a particular property that differentiates the procedural semiotic resources from the static
ones. Both share the social aspect, in the sense that their meaning potential can only be realized in
relation to a given receptor, in a particular context and so on. But the procedural semiotic resource
may depend on an additional aspect, of technological nature, which is its integration within the
system’s logic. In other words, a certain semiotic resource can only be procedural if either it is itself
procedural, or if it affects the logic of the system in some degree.

For example, in MissionMaker, any audio or textual content added by the designer to a game
is a static semiotic resource. It is static because their actual content has no influence over the
computational logic of the system. That is, any particular audio or text used in the games could be
swapped with a different content and the execution of the program would be identical. They may

23In practice, the very choice of what approach to take is usually meaningful in itself.
24Assuming the program produces an output or effect that can be perceived externally, in real-time or not.

24



still carry meaning potential - for example, in most of the games that were analyzed the characters
deliver important narrative elements via audio or text content. But these are not procedural semiotic
resources, since they don’t participate in the logic of the system, and therefore, in this case, they
can’t provide meaning potential of procedural nature.

However, consider if MissionMaker provided a function for analyzing audio, even a simple one, able
to detect relative volume. Suppose this could allow the game designer to create a rule that makes
certain characters attack whenever they hear a loud sound. With that, audio files could be considered
a procedural semiotic resource, since they would be participating in the logic of the system. The
resource itself (the audio) never changed, but the context (system) changed, via the addition of the
function able to analyze audio. Also, in this case, although the audio itself is now contributing to the
meaning potential in a procedural sense, it is still in a lesser degree, compared to a rule or behaviour,
for example (such as the function able to analyze it).25

Another point which is relevant to the analysis presented here is the fact that, while procedural
meaning can only be realized through the execution of the code in which it is represented, this doesn’t
always require user interaction to happen. In the particular case of computer games, interaction is
required in order to realize the meanings represented specifically in gameplay elements. For example,
in the classic computer game The Oregon Trail (MECC, 1971), different aspects of the life of 19th
century American settlers are represented via systems, which need to be interacted with in order to
be realized.

On the other hand, many games also present meaning via "non-gameplay" elements, which are the
ones not necessarily dependent or associated with gameplay in order to be realized. For example,
most real-time simulations reveal many aspects of their systems even without being interacted with.
By simply observing the characters and elements following their behaviours and rules, it is possible to
grasp the meanings represented in the system, like the audience would in an improvisational theater
performance, for example.26

As mentioned before, in the case of computer games, interactivity is required in at least in some
level. However, regardless of the necessity of interactivity for the realization of a particular procedural
meaning, in this study the focus is not on the interactions themselves, but on the procedural systems
(or algorithms) through which they are made possible.27

In order to further contextualize the procedural semiotic resources that will be presented in this
section, it is also useful to understand in practice how they relate to the actual execution of the
code. A computer program is usually organized in two main parts (or sections): the "setup" and the

25The idea of measuring levels of procedurality is related to the concept of Process Intensity, mentioned previously
in this text (p. 19).

26Additionally, the final product may not even be an executable program, but the result of its execution, which is
the case in many generative artworks, such as the images created by the aforementioned “digital painter" Aaron (p.
6). The execution of the code is still indispensable for the materialization of the artwork, although in this case the
realization of the actual expressivity (or meaning) in the artwork only happens when the images are viewed by an
audience.

27The topic of interactivity is also discussed previously in this text (p. 10).

25



"loop" - they are essentially the same in the sense that both may contain code, but they differ in their
purpose in the context of the execution of the program. The "setup" is executed only once, before
the "loop", and it usually contains code related to preparing the environment for the execution of
the rest of the program - this may include the definition of parameters for the outputs (visual, audio
and so on) and inputs, and global variables and functions. The code inside the "loop", on the other
hand, is repeated indefinitely.28

What this means in a practical sense is that, in principle, all of the functions, attributions and
processes contained in the “loop" section are "alive" (always updating). From the perspective of
the procedural semiotic resources, presented later in this section, this means that any function or
operation may be used in a program in a way such that it is repeated (indefinitely or not), even those
that don’t originally involve loops (such as a simple variable attribution, for example).

Meaning in Digital Media: Multiple Contributions When discussing expression and represen-
tation of meaning in the context of procedural authorship, it is particularly relevant to consider the
origin and intention behind such acts. This is because, in digital media, there is a significant number
of layers and contributions involved in every process, as seen previously (p. 18). For each expressive
or significant act or production, there may be a wide range of contributions - from the actual creator,
to the programmer of the software and tools, as well as the designers of the hardware itself.

Traditional tools and processes may also involve a variety of layers and contributions. The brush used
by a painter has a particular design which influences the artwork, for example. However, in digital
media the systems are usually much more complex. For example, in a digital painting, although its
expressive qualities are usually the result of the work of the artist, the designers (or programmers)
that created the brushes and effects that were used may also have a significant influence in the final
product.

In MissionMaker, although the software offers a relatively high degree of customization to the user,
this is mostly limited to static elements and properties. As we will see further in this section,
procedural authorship in MissionMaker is restricted to mainly three aspects: the attribution of
variables, the creation of rules - or conditional statements - and the choice of composition. All the
other procedural semiotic resources are locked into the game engine.

This means that most of the procedural semiotic resources involved in a typical MissionMaker game
are authored by the creators of the software, not the designers of the games themselves. However,
this doesn’t always necessarily translate to a diminished creative control of the game designers over
their creations. Specially considering the subjective nature of expression, representation and meaning,
both from the perspective of the creator and the audience - for example, a particular semiotic resource
may be used by one creator to express an idea in a meaningful way, while a different creator may be
unable to represent any meaning whatsoever with the same resource.

28This is a simplified generalization, used in order to explain the basics of the execution of a computer program.
These two sections mentioned are not necessarily always present, and different programming languages and approaches
may have different nomenclatures, or even additional categories.

26



In my analyses of the MissionMaker projects, I found that most of the authorship exercised by the
game designers happened via static elements, such as text, images, sound files and music. There
were still, however, several instances of procedural authorship, which will be presented further on.

Choice of Perspective of Analysis The procedural semiotic resources identified in this study were
selected as being the most relevant to the game designer using MissionMaker. Therefore, this is
not meant to represent a comprehensive listing, neither in regards to digital media, nor to games in
particular. A different object of analysis, such as a different software, or a low-level programming
language, could lead to the identification of a different set of procedural semiotic resources, organized
in a particular structure of its own. Additionally, the categorization presented here is not intended
to be rigid or definitive. It represents initial considerations, which are flexible and open to future
revisions.

There are many semiotic resources in MissionMaker that are not accessible to the user, which are part
of the software’s engine. In the end of this section I briefly present some of them, explaining how they
can affect and contribute to the execution and displaying of the games developed in MissionMaker,
both in a technical sense and in terms of their meaning potential.

The main procedural semiotic resources in MissionMaker which are available to the user are the
variables and the rules (or conditional statements). As we will see, variables, besides being a
semiotic resource in itself, can also be part of conditional statements. This kind of nested hierarchy
can be illustrated via an example presented by Theo Van Leeuwen in his introductory book on social
semiotics, in which the act of walking is described as a semiotic resource (LEEUWEN, 2005).

Leeuwen explains that, since a person can walk in a variety of different ways, there is a potential for
meaning (or expression) in this action. A slow, methodical walk style may express fear, while walking
with a swing may express joy. However, one could also identify a series of other semiotic resource
subsets, that are contained in the greater semiotic resource of "walking", such as "leg movement",
for example. A person can be sitting down and, simply by moving or positioning their legs, express
a variety of ideas and meanings (crossing the legs to express formality, opening them to express
intimacy, shaking them to reveal nervousness and so on).

Some of the meaning potential available in the subset of "leg movement" may intersect with the
greater semiotic resource of "walking", while some may apply only to this particular subset. The
point is that each one of these choices of perspective allow a different way of approaching the same
subject, through different scopes and levels of detail, and for particular purposes.

In a similar manner, the procedural semiotic resources that will be presented in this section also come
from different levels of abstraction. As mentioned before, these go from the lower level, featuring
elements such as variables and data structures, up to the level of the conditional statements and
functions, and finally to high-level abstractions, such as the conceptual models. Since the focus of
this text is on the semiotic resources available in MissionMaker, not all of these abstraction levels
are presented here (the lowest levels would be machine language, or perhaps the hardware logic),
and not all of the possible procedural semiotic resources for each one of the levels is present.

27



Also, in MissionMaker, procedural authorship may happen in certain elements or levels of abstraction,
but not in others. For example, the software does not provide the user with tools for modifying the
movements allowed for the characters, such as how they turn their heads to follow another character.
This means that this is not a semiotic resource available to the designer, since there is no creative
control over it. On the other hand, the designer does have access to the rules that define in which
circumstances that particular behaviour will be triggered. That is, in this case, the designer doesn’t
have creative freedom in a lower level (that particular behaviour), but there is some control in a
higher level (the triggering of such behaviour).

28



4.2 Procedural Semiotic Resources in MissionMaker
The previous pages presented the concept of procedural semiotic resources, as well as some initial
considerations regarding them in the context of digital media. The following pages consists of the
actual analysis of the MissionMaker software, considering the perspective of the designer using its
tools and functions in order to create a game.29

First, I will briefly present the user interface (UI) of the MissionMaker editor (Fig. 10, below).
However, rather than describing the complete structure of the software itself, including all of the
available functions and features, I will present it from a more practical perspective, considering the
workflow of a game designer approaching MissionMaker with a particular idea or creative intent.30

Figure 10: MissionMaker: user interface

After creating a new project and entering the editor, most users begin creating their game by adding
locations to the map in order to compose the layout of the level. This is done by dragging the icons
representing the desired locations from the visual menu on the top, down to the map view.31

29This is based on the observation of the participants working on their games during the workshop, as well as my
own experience with the software.

30The participants of the workshop received a few instructions about how to use the software before the game
creation exercise. They also had help from the tutors, including myself, throughout the activity. For the analysis
presented here, the focus is on the actual steps taken by the designers to create their games, regardless of the learning
process for using the tool. Therefore, topics related to that aspect of the workshop, such as the usability of the tool
itself, for example, are not the focus of this analysis. For a more complete documentation about the software’s UI
and functionalities, refer to the MissionMaker Teacher Support Packs, in the Immersive Education website - URL:
www.immersiveeducation.eu

31No other physical object, such as Props and characters, may be added until there is at least one room for them
to be placed on (this reflects MissionMaker’s emphasis on the physical aspects of the simulation, which is discussed
further on in this text). The map view can be presented either in the large main viewport, in the center of the screen,
or in the smaller viewport to the right, which is the case in the screenshot presented here (the locations can be seen
in the grid). Both viewports may contain either the map or a first-person perspective of the environment, which
roughly simulates the player’s experience during gameplay. The image in this page is a composite of multiple states
of MissionMaker’s UI (version 2.0 Build 5), representing most of the elements mentioned in the text.

29



Alternatively, instead of beginning by creating rooms, the designer can also start by creating or
editing some other aspects and elements of the game. For example, it is possible to customize the
Game and Player Attributes, to edit the existing default Rules and Media, that are present in every
new project, or to create new Media (I will elaborate more on these items further). However, in the
MissionMaker workflow, these elements are usually dealt with further in the game creation process,
and after some rooms and objects have already been created.32

After that, most users start including objects in the environment (they can be accessed via the NEW
menu, on the top right). This usually involves adding Props, Active Props, Doors, Pickup items and
Characters. Additional Locations and Special Effects may be included as well. For each type of
object selected, a secondary visual menu appears across the top of the screen, showing thumbnail
visual representations of the available objects. The process of including the objects in a particular
position in the game word is similar to the one described earlier for adding locations. This is done by
dragging objects down to the viewport which is currently showing the first-person perspective mode.
The object can then be adjusted and modified spatially, directly on that viewport, and the individual
Properties and Actions for each object may be accessed via the panels occupying the lower half of
the screen, on the right (Properties and Actions are presented as tabs in the same panel).33

There are different properties available for each type of object - for example, characters have
properties for appearance, strength and walking style, and energy items has the Health level that
it will provide if used. Also, each type of object allows for different authoring affordances to the
designer, such as in freedom of movement, scale and rotation. Considered as semiotic resources,
each object may allow for different uses according to the context - for example, Props are objects
with mainly decorative purposes, that may be used as a static semiotic resource, however, as we will
see further, they may also be used as procedural semiotic resources depending on their role in the
system.

At this point of the creative process, users usually also create some Media items, which can be
pop-ups (screens displaying text, image or both), audio, video or speech. Media items are a
type of content that, differently than the objects mentioned before, don’t have a direct physical
representation in the game world. As such, they depend on other elements, such as objects or rules,
in order to be included in the game system, and to be displayed or presented during gameplay. For
example, a Pop-Up can be set to be shown if the player picks up a certain object, or a certain audio
file can be played when a character is shot - this kind of behaviour is possible in MissionMaker via
rules, which are introduced next.34

32Game Attributes include variables related to the game’s overall system (such as interpretation of user input), and
Player Attributes includes variables related to the player’s character (such as Health and parameters related to user
input). Both items are accessible in the MY GAME menu, on the top left.

33To access the Properties and Actions panels for an object, it must be selected (this is done either through the
viewport, or via the MY GAME menu). An additional, more advanced, object type available is the Trigger Volume,
to be used in association with rules (this will be mentioned further).

34The creation of Media items, similarly to the objects, is also done via the NEW menu. Although Media items
don’t have a direct physical representation in the 3D environment, they may be associated indirectly to particular
locations or objects via the game’s logic (this allows, for example, to have a certain sound effect play whenever the
player goes through a particular place).

30



Up until this point in the game creation process, the designer only created and modified static
elements. The following steps describe the process of creating procedural elements, in order to
describe behaviours or rules.

A rule is defined in a somewhat "inverse" logic, by first choosing the desired resulting Action, and
then the condition that will Trigger it. For example, the designer can create a rule which states that
a certain character will say something (the Action) as soon as the player enters a certain location
(the Trigger). Or a door can be set to open (Action) whenever a certain amount of time has elapsed
(Trigger).35

Interestingly, however, although there is an item for adding Rules in the NEW menu (in the top
right of the screen), it doesn’t actually have a function when clicked. This is because, as mentioned
before, the rule creation process is "inverted" - the designer needs to first select the action that
should result from the rule. For example, in the case of the door opening, illustrated in the previous
paragraph, the designer would have to select a door, access its Actions panel and click on the Open
action in order to create a Rule that will result in this.36

The creative process from that point on differs more greatly from user to user. However, it usually
involves going back and forth between the functions mentioned before, in order to build the rest of
the game world and the rules. This generally also includes an introduction and an ending to the
game, which is usually presented via pop-ups, and sometimes through audio or video content.

As mentioned previously, this is not meant to be a complete description of the functionalities in
MissionMaker, but an overview of the creative process and the tools that are available to the users.
It shows, for example, that in this software there is a great emphasis in static elements. The main
procedural semiotic resource available to the designer is the Rule, although variables can also be
explored in order to contribute with procedural meaning potential, as shown in the following pages.

35MissionMaker has several types of Triggers available (Spatial, Global, Speech and so on). A Rule may also have
a parameter called an "Activator" - for instance, in the first example presented in this paragraph, the Activator is the
player, while in the second example the activator is the passing of time (however, often the Activator is integrated
within the Trigger parameter).

36After that, the designer still needs to define the remaining parameters of the Rule, via the Rule Editor panel, at
the bottom of the screen.

31



Variables

Variables are one of the most fundamental elements in most computer programming languages, and
also an important resource in the context of MissionMaker. A variable is an abstraction that may
contain, be associated with or point to different types of data and content, as well as other variables
and expressions (which may be very simple or extremely complex). As such, a variable may contain
static or procedural content - and, as we will see, in both cases it has the potential to be a procedural
semiotic resource.

A variable is usually named in an intuitive manner by the programmer, making a direct reference to
what it represents - for example, a variable containing the size of an object may be called “objectSize".
In practice, however, this normally doesn’t affect the actual logic of the program. Therefore, the
naming of the variable doesn’t contribute to the system in terms of meaning potential, at least in
principle. The actual meaning potential in a variable resides on the designer’s choice to include it in
the system, how it affects the system and what is being represented in that context.

As mentioned previously, variables may be considered a procedural semiotic resource even if they
contain or point to static data or content (such as strings of text, numbers, images and so on),
providing they affect the system’s logic (p. 25). For example, in MissionMaker there is an object
representing a wine bottle, which can be picked up and used by the player character. This object
has a variable associated with it called “Health", which indicates how much the player’s health
should increase when it is used (that is, when the player drinks the wine). Although this is a static
information (a numeric value), it affects the behaviour of the simulation - for example, it changes
how much damage the player character can take in combat. A more straightforward example of this
would be the variables associated to the player character itself, mentioned previously.

In the context of MissionMaker, variable attribution is a procedural semiotic resource with a limited
meaning potential. There are two reasons for this. First, because it is not possible to directly create
new variables. It is possible to create new entities, which in turn contain variables associated with
them, but it is not possible to add or remove variables from these entities. Second, because only
a certain set of the variables used in the simulation may have their values modified, or used as
parameters for the definition of rules and behaviours.

These restrictions also have an important implication regarding authorship, since these predefined
procedural semiotic resources represent meaning potentials that cannot be changed or modified by the
user. For example, most of the variables available emphasize the physical aspects of the simulation.
The variable “resistance" defines how much damage a character can take, “scale" defines its size
in the game world and so on. The game designer may choose different values for these variables,
and thus exercise a certain degree of authorship, but it is still very limited. Although new variables
and economies could be implemented through some clever manipulation of the entities and variables
available in the software, it still holds true that there are several meanings and models which are
predetermined - or hardcoded - in the tool.37

37This limitation is even more significant in the case of game variables that are not modifiable by the user, or
those that can’t be referenced in the rules and behaviours (this is the case of the resources in the software’s engine,

32



Most of the constraints in MissionMaker exist by design, as a way to make the game creation process
more accessible and straightforward to the user. The simplified options and modular approach allow
a much more intuitive and straightforward workflow, making it easier to quickly build fully functional
games (specially to young children, and inexperienced computer users).

Having said that, limitations in the tool are not necessarily an obstacle, specially considering that
often creativity thrives under constraints. For example, in one of the games analyzed in this study,
designed by Andrew Smith, he included the wine bottle, mentioned previously, but the "Health"
variable was modified to a high negative value. This resulted in damage when the player consumed
the item. By doing so, Smith was adding a mechanic that punished the character Beowulf (controlled
by the player), if he got distracted and decided to drink wine instead of following with his mission (in
this particular case, the procedural meaning in this mechanic was also reinforced by a static semiotic
resource, in the form of a pop-up text message reprimanding the character).38

presented further - p. 38). Even the default values for these variables, although modifiable, they reflect the particular
perspective that the designers of the software had in relation to these resources.

38The focus of this study is in the analysis of the games and their internal logic, not of the MissionMaker software
itself, its editor or game engine (including the internal variables and all the other procedural semiotic resources that
are not directly related to the logic of the games themselves, such as the parts of the program related to the interface,
data handling and so on).

33



Rules: Conditional Statements

Conditional statements are functions that, combined with variables and expressions, control the
flow of execution of a program according to certain conditions. This is one of the main elements
that allow procedurality to happen in digital media, since the conditional is an inherently procedural
semiotic resource. In MissionMaker, conditional statements are available in the form of "Rules",
which are the main resources for procedural authorship in this software.

One of the most straightforward and practical advantages of using conditional statements is that they
allow and facilitate the creation and management of more complex rules and systems (as compared
to simple variable attributions, for example). However, perhaps the most important aspect of this
resource is that it provides an additional layer of abstraction in the logical flow of the algorithm.
This may be explored by a designer, creator or artist to represent or express meaning potential in a
more robust and sophisticated manner.39

As mentioned before, in MissionMaker, among all the procedural semiotic resources available,
conditional statements are the ones that allow the designers to represent meaning potential with the
highest procedural intensity (p. 19), at least in principle. The designer has a relative high degree
of freedom for creating and defining new rules, or behaviours, which can be associated and related
not only to characters, but also to most objects and other aspects of the simulation and the game’s
logic.

However, there are still limitations in how much the designer is able to express through this particular
resource in MissionMaker. For example, although there are many options available for Triggers, only
one is allowed for every rule. This means that it is not possible to create more elaborated rules,
requiring more than one condition to be met. Also, each element, such as an object, a character or
a room, has a fixed set of actions that can be triggered by a rule.

As with the variables, the amount of meaning potential that can be represented through this
particular semiotic resource is determined by how much control the designer has over its creation and
modification. In the particular case of conditional statements, this may also vary according to the
level (or layer) and element being considered. On one hand, elements which are hardcoded, such as
the predetermined set of triggers mentioned before, don’t allow the user the opportunity to represent
or to make meaning. On the other hand, aspects that are not fixed (or less limited), such as the
possible targets available for the rules, allow the user a greater control.

As mentioned before, this also depends on each particular creator, their intention, the audience and
context in which each semiotic resource will be used. For example, one designer may require a certain
feature that is not available in a particular semiotic resource - therefore, from the perspective of this
user, the software is very limited. A different designer, however, may consider the same feature to
be irrelevant.

39In theory, in some cases a conditional statement could be implemented using simple variable attributions being
executed in the program’s loop. In a general sense, often complex higher-level functions can be substituted by
alternative solutions based on more fundamental and simpler elements. The concept of levels of abstraction was
presented previously (p. 23).

34



Compared to other game authoring applications with a similar target audience in mind, MissionMaker
offers a relatively powerful set of tools for creating rules and behaviours. However, in most of the
games analyzed in this study, rules are used in a superficial manner, for simple and straightforward
tasks - for example, triggering a text or audio message when the player clicks on a character, or
opening a door when the player picks up a certain object. Also, few of the games explored rules
and behaviours as procedural semiotic resources, taking full advantage of them in order to create
procedural meaning potential.

The following are two examples in which the designers were successful in expressing a particular idea
or meaning via rules and behaviours.

The first example is from the aforementioned game by Andrew Smith, a teacher student in the English
and Drama programme. In his game the player adopts the role of Beowulf, the title character of
the poem. In the beginning of the game the player encounters the king, who requests him to kill
Grendel’s mother and find his crown. The game ends in victory for the player if the beast is killed
(Fig. 11, below).

Figure 11: The King (Andrew Smith) Figure 12: Mother attacks (Andrew Smith)

In this game, Grendel’s mother attacks if the player picks up the crown which is located in her lair,
or if she is attacked (Fig. 12, above). The rules in MissionMaker are as follows:

I f Crown becomes Owned by P l a y e r
then Grende l ’ s Mother Seeks and Des t r oy s P l a y e r .

I f Grende l ’ s Mother i s sho t by p l a y e r
then Grende l ’ s Mother Seeks and Des t r oy s P l a y e r .

Smith was representing two different levels of meaning through these rules. First, he provides a
straightforward reaction to the theft of the crown, as well as to an eventual attack by the player.
However, the behaviour is also meant to fit into the broader perspective of the story told in the
original poem.

35



In the story, it is not necessarily clear who is the "villain" and who is the "hero". From the perspective
of Grendel’s mother, Beowulf is the "monster" who killed her son. By having a behaviour associated
to the character of Grendel’s mother, which only makes her attack the player if a certain boundary is
crossed, Smith is representing the fact that this character is not inherently "evil", therefore echoing
the ambiguity of the original story. In other words, Smith used a Rule, which is a procedural semiotic
resource available in MissionMaker, to represent a particular Meaning Potential.

Another example is in the game created by Tracey Matthews (Fig. 13, below). In her game, the
player, in the role of Beowulf, can speak to some of the warriors by clicking on them.

Figure 13: Warriors (Tracey Matthews)

One of them, after spoken to, begins following the player around. The rule is:

I f War r i o r i s c l i c k e d then War r i o r s t a r t s f o l l o w i n g P l a y e r .

This rule was implemented by Matthews as a way to represent the loyalty of the warrior towards
Beowulf, who is considered by them as their leader in this context.

This meaning (the concept of "loyalty") does not result solely from that rule, but also from its presence
on this particular system, and its relationship to the other semiotic resources, both procedural - such
as the actual following algorithm, for example - and static - such as the popup text message containing
the dialogue associated with that situation. The same rule could be used in a totally different game,
but being used to represent a different meaning potential (or no meaning at all).

Interestingly, the specific behaviour that allows a character to follow another in MissionMaker is
hardcoded in the game engine. Therefore this particular behaviour is not a creation of the game’s
designer, but of the software’s creators. On the other hand, it was Matthews’ choice to create the
rule that made this behaviour be triggered by the player interaction with that character. By doing
that, she leveraged the meaning potential of a preexisting behaviour - the algorithm for "following"
-, integrating it into her own rule.

This rule in Matthew’s game also illustrates well the idea of breaking from the objective or systematic
aesthetics, which is common to procedural expression, as mentioned previously (p. 11). Although

36



the behaviour results from a precise rule, the way it is integrated into gameplay makes the actions
of the NPC seem organic, almost life-like. During the workshop, when other participants played
Matthew’s game, most of them didn’t even notice the behaviour at first. After interacting with the
game for a while, eventually it would become clear that the warrior had been following Beowulf since
they spoke.

This belated effect is only possible because in this case the system doesn’t respond directly to the
player’s input, which is what happens in the rule in Smith’s game, mentioned before. As soon as the
player picks up the crown, Grendel’s mother begins attacking, making it explicit to the player that
there was a rule behind this behaviour.

Once again, these behaviours are both also influenced by hardcoded functions from MissionMaker’s
engine. While the behaviour for following is relatively organic by design, the “seek and destroy"
behaviour was implemented in a much more straightforward manner. These predefined functions
from MissionMaker’s engine will be discussed next.

37



MissionMaker Engine: Hidden Meanings

The two procedural semiotic resources presented previously - variables and rules (or conditional
statements) - are the main elements identified in this study through which the game designer is
able to exercise procedural authorship in the context of MissionMaker. There are also many other
procedural semiotic resources that are an integral part of the games created using this tool, but that
are not accessible to the user.

This section will present some examples of these resources, from different levels of abstraction,
analyzing how they affect and contribute to the execution and presentation of the games, both in a
technical sense and in terms of their meaning potential.40

As explained previously, levels of abstraction in digital media represent the distance between a
particular abstraction and the more fundamental logic of the medium (p. 23). For example,
considering the procedural semiotic resources available to the designer in MissionMaker, presented
previously, variables have a lower level of abstraction, compared to conditional statements (or
Rules).41

For the purpose of the following examples, high-level abstractions refer to the functions that are
specific to MissionMaker’s engine, medium-level refers to the programing language used to design
the software and low-level relates to the computational logic of digital media in a more fundamental
sense.

The analysis on the higher-level abstractions is more thorough in comparison to the ones for the levels
below, since lower level abstractions are usually more generic in terms of function, and therefore less
specific to particular software and applications.42

High-Level Abstractions
The most evident high-level abstractions in MissionMaker’s engine are the Rules and Variables which
occupy the same level of abstraction and function as the ones that can be edited or created by the
user. An example of a Rule in the engine could be the default character behaviour for reacting to
being attacked. Examples of variables could be any of the properties which are fixed, such as a
character’s head size, the speed in which an item can be thrown and so on. Since these resources are
not directly accessible by the user, it is not relevant to this analysis exactly how they are implemented
in the system.

Software applications usually also involve "conceptual models", which are high-level abstractions
used to describe the structure and logic of each one of the different elements and behaviours in the
system. In a game engine such as MissionMaker’s, conceptual models have a significant impact in the
final product, defining how the 3D topology will be described and the structure of the rules system,

40As mentioned before, although this text often refers to aspects related to the execution of the code, the focus of
this study is still on the creative (or design) aspect of procedural authorship.

41This is reflected in the fact that variables may exist by themselves, outside of rules, while rules usually depend on
(and include) variables.

42Also, this analysis is slightly longer than the previous ones, of the procedural semiotic resources available to the
user. This reflects the fact that, in MissionMaker, most of the resources exist exclusively inside the engine.

38



as well as how the player’s perspective of the game world will be rendered on screen. Therefore,
considered from the perspective of a procedural semiotic resource, these conceptual models provide
a significant amount of meaning potential to the overall experience of these games.43

For example, consider the representation model used to describe the game world internally in
MissionMaker. As mentioned before, this particular engine is heavily based on a metaphor of a
3D physical world, which is a common model in many modern digital games, such as First-Person
Shooters, "platformers" and even the more experimental or artistic productions. The structure
through which the world is represented inside the engine is described in the form of a conceptual
model. This includes, for example, the information that objects have a certain shape and position
in the 3D space, that they are submitted to certain laws of physics and so on.

Compare this to an alternative representation model, such as the one in the game Pac-Man (Namco,
1980), which still represents a somewhat physical space, however in a more abstract two-dimensional
environment. Or compare it to a spreadsheet software application, which represents its content as
numbers and tables, with no relation to space whatsoever (except for the user interface layer). The
representational model does not refer to or contain information or data regarding the content itself
- such as the 3D object data in MissionMaker, the graphics in Pac-Man or the numbers from a
spreadsheet. It is solely a description of the structure and logic through which the actual content
will be described, stored and presented. The same is true for all the other conceptual models.

Also, the actual contents that are informed by the conceptual models may be considered procedural
semiotic resources themselves, even when they are static. As mentioned before when discussing
variables, any static piece of data may be set up in a way that it can affect and contribute to the
system’s logic. An example of that in MissionMaker is the topology of the rooms, which may affect
how characters behave and relate to each other. An example in which this does not happen is the
topology of the characters, which in principle doesn’t affect the actual behaviour of the system (in
the simulation, all character types are considered in the same way, via their bounding boxes).

The aesthetics of a program can also be seen as defined by conceptual models, such as the rendering
functions in a 3D engine used to display the environment, objects and characters on screen to the
player. Considered as a semiotic resource, these functions may be used by the designer to express a
certain aesthetics or even to represent particular ideas or concepts.

For example, the rendering functions in MissionMaker are relatively realistic, in the sense that the
world is presented to the player in such a way as to simulate a first person perspective, following
real world physics about how certain materials and textures react to light and so on. However,
a rendering function can also be designed to provide a different aesthetic, such as enhancing the
contrast of the image, in order to create a more dramatic experience, for example.

Although the functions that deal with the output of a system are inherently procedural, their end
43Some of the terms used to describe the high-level functions are specific to the examples presented here. Different

systems, software and languages may utilize different terminology. Also, this particular definition of “conceptual
models" may differ from that in other fields.

39



product is always static. For example, visual functions, such as the ones mentioned above, output
images, while audio functions output wave content, and so on. This also means that these are
the only semiotic resources that are directly accessed by the user or audience - any other resource
depends on the output functions in order to be visualized or perceived.

The conceptual model for playability is also a particularly relevant one in MissionMaker, since games
can only be fully realized through player interaction. In a MissionMaker game, the player can move
the character through space using the directional keys, rotate its head using the mouse (or trackpad),
jump, crouch and so on.

Considered as a procedural semiotic resource, playability may also have meaning potential in itself.
For example, in a first-person game it is possible to express that the player’s character is confused
by inverting the key associations for movement - this makes the avatar go left when the right key is
pressed, look down when the mouse is moved up and so on.44

Medium-Level Abstractions
In MissionMaker, medium-level abstractions could be the functions found one level beneath the
actual software, which would be the programing language used to design it. Rather than discussing
the specific programming language used to implement MissionMaker, here I am making reference to
the level of abstraction in which it resides. In this case, these are the functions usually found in a
programming language that operates in this level of abstraction.

For example, in this level there could be specific functions and procedures related to how this particu-
lar language deals with visual output, as well as input and data management. Programming languages
also often provide their own implementations of certain functions such as sorting procedures, data
structures or random number generators, which are commonly used by programmers as a means to
introduce variation in a system. For instance, a randomizing function may be used to determine
when and how the characters in a simulation use their idle behaviour animations. According to the
language used to implement that simulation, a different algorithm could be used to calculate the
random numbers, therefore affecting its outcome.

The actual contribution of this level of abstraction in the final product may be very subtle. However,
in some cases the effect can be very significant, such as in applications that involve physics simulations
- the functions used to calculate the different forces acting on the objects may drastically affect the
resulting behaviour of the simulation.

Lower-level Abstractions
As presented previously, the lower-level abstractions are the functions that are closer to the funda-
mental logic of digital media, as well as to the hardware logic. They are more general in terms of
function, and therefore less specific to any particular software. For example, while some high and
medium level functions in the MissionMaker engine may exist only in this particular software (or only

44The “conceptual models" shown here, although considered to be high-level abstractions in the wider scope of this
analysis, they tend to occupy different levels of abstraction in relation to themselves.

40



in 3D game engines), most of the lower-level abstractions are common to any game, software or
language. This level includes functions, procedures and variables more closely related to the actual
hardware behaviour. For example, the functions for actually sending visual output information to the
computer screen, or the manipulation of data stored in the computer’s memory.

On one hand, the fact that the functions in this level are not specific to MissionMaker (or to the
programming language used to implement the software) means that they contribute less in defining
the particularities of this application, in the sense of differentiating it from other productions in
digital media. On the other hand, this also means that this level is the most influential, in the sense
that it underlies every single software, programing language and operating system based on it.45

As an illustration, consider the fact that low-level functions represent a particular ideology, going back
to the origins of the digital computers, which is defined by a systematic approach to data processing,
as well as a direct connection to military interests. Although the meanings and implications related
to these functions don’t necessarily affect the use of modern computers in a direct sense, they are
certainly present and contribute to the role of digital media in society.

It is outside of the scope of this text to discuss in greater depth how this affects the actual creative
process of the game designer using MissionMaker, as well as the games themselves. However,
recognizing this influence is relevant, in the sense that it directly relates to the choice of the creator
to use this particular medium or language (or choice of MODE, as seen previously). A type of
creative approach that directly addresses this issue is the practice of Circuit-Bending, for example,
in which creators disturb or modify the actual systems, and even the circuits in the computers and
machines used.

These are examples of just a few of the procedural semiotic resources that exist outside the reach
of the game designer using MissionMaker. In all of these cases, the user can’t influence these
particular resources, their properties or behaviour, since they are contained in the software’s engine.
For example, the MissionMaker user can’t choose a different rendering aesthetic, change how the
player’s input is interpreted by the system or define different functions for rendering 3D models.46

These resources may still express meaning, or at least represent a certain approach or ideology, which
comes from the designers and programmers responsible for creating all of these lower-level functions.

These are all inherently procedural semiotic resources, in the sense that they exist solely in relation
to their contribution to the system’s logic. For example, consider the conceptual model for Rules in
MissionMaker, which includes the components that make up this particular element, as well as how
they are structured. This model only makes sense as a guide to how this particular function will be
executed in the context of the program.

45The notion of levels - or layers - of influence was discussed previously in this text, in the presentation of the
Framework and Methodology (p. 18).

46There is a certain degree of control over some of the lower-level functions and properties, however this is not
common.

41



4.3 Composition
We have seen that the game designer using MissionMaker has access to two types of resources:
procedural semiotic resources - the focus of this study -, which consists of the variables and rules
(p. 29), and static semiotic resources, which may be textual, visual or audio content (p. 24). Now
we will see how these resources are integrated into a single coherent system - the finished game -,
which is done through the act of composition.

Previously, I presented the game design workflow in the MissionMaker editor, and how it emphasizes
the spatial and physical aspects of the simulation. Because of that, in this particular software the
act of composition usually begins by selecting and positioning the different elements in the game
world, which is then followed by the definition of the rules, behaviours and variables (p. 29).

The diagram below (fig. 14) represents how the semiotic resources are organized in MissionMaker,
and how they may be accessed by the designer. It also includes the resources found in the game’s
engine and the software itself, which are not directly accessible to the user. Static semiotic resources
are included as well, since they are an integral part of the game design in this software.47

Figure 14: Diagram for the Semiotic Resources in MissionMaker

Procedural Authorship

Composition in digital media is analogous to that in other languages, such as visual design, music,
cinema and so on, in the sense that it involves organizing smaller elements in order to form a
larger structure, which usually expresses or represents an idea or meaning that each element couldn’t
represent by themselves individually (or if grouped in a non-structured way).

In this study, composition is considered as a semiotic act involving the selection, combination and
arrangement of semiotic resources in order to produce a particular message or meaning. In that

47As mentioned previously, static semiotic resources are any textual, visual or audio content that does not participate
in the logic of the system - as such, they don’t contribute to the procedural meaning potential, although they may
provide static meaning potential (p. 24). In the diagram presented in this page, the static semiotic resources listed
as part of the Engine refer to the content that comes as part of the software, and that can’t be modified by the user
(character, object and location models and textures, default sound effects and so on). The diagram also references
topics introduced previously in this section.

42



sense, the process is analogous to the act of combining words to form sentences. Applying this
analogy to the creative process in MissionMaker, the "grammar" through which these sentences can
be written would be the particular structures and relations through which the designer may compose
the semiotic resources, and the "text" would be the final game (or a particular element or subset of
it).48

As in other languages and tools, the grammar of MissionMaker is what defines the type of creative
process and output associated to it. It is the grammar which provides the particular constraints (via
rules and structures) through which the act of composition may take place. These constraints are
necessary, since they define the characteristics of this particular language.

Besides the constraints that define MissionMaker as a game creation tool (instead of a word processor,
or a low-level language, for example), there are also the constraints that make this particular software
more accessible, as mentioned previously (p. 33).

"Composition" is being considered here as the act itself, instead of the elements involved in it, or
its result. For example, in MissionMaker choosing the position of a certain character in a room is
an act of composition. This could also be described as the modification of the variables that store
this particular object’s 3D position in the world, for example. However, from the perspective of the
creative process, this is still an act of composition.

There is, however, a fundamental difference that distinguishes composition in digital media from
that in other languages: the fact that it involves procedural semiotic resources, which allows for a
unique type of expressiveness - or meaning potential -, as explained previously in this text (p. 6).

Additionally, in digital media the act of composition itself can also happen procedurally. That is,
it may exist in the form of an algorithm or procedure, which describes the structure or logic of
the composition, allowing it to be applied or executed dynamically to any given set of elements
(considering that they fulfill the format and quantities required by the algorithm).

In MissionMaker, this is the case of Rules, for example - their structure represents a particular type
of composition involving certain types of smaller elements, or units. This doesn’t change in any way
the nature of the act of composition itself, its role in the creative process or its expressive qualities
- it is just shifted, from the mind of the creator to an algorithm. In other words, in this case, the
composition becomes a "metacomposition".

We have seen that semiotic resources allows the expression and representation of meaning potential.
The act of composition can also be expressive, however, as mentioned before, it operates in a different
semiotic level. Composition produces meaning potential via the selection and combination of existing
semiotic resources (some of which could be, as mentioned before, “metacompositions").

48Compared to other game creation environments which allow the designer access to more low-level functions,
MissionMaker offers a relatively limited grammar. As mentioned before, this is a design choice, in order to make the
process more accessible. However, most of the concepts discussed here apply to digital media in general.

43



The type of meaning potential represented via a particular act of composition - if it is going to be
static or procedural - is directly dependent on the elements it involves, how they are organized and
related to each other.

For example, if the placing of a certain object into the game world does not affect any other object,
character or rule, and if that object is itself static as well, then this particular act of composition has
no procedural meaning potential. An example of that would be an object that cannot be picked up
or interacted with in any form by the player or any other character.

The placement of this object could still produce static meaning potential, if the choice of having
that particular element in that particular context had some kind of narrative or expressive relevance.
For example, the designer could place a single nail in a wall, in order to suggest that a picture frame
has been removed from it. In this example, what is being considered as expressive or meaningful
is not the semiotic resource itself (in this case, the nail), but how it was composed within the system.

4.4 Comparing MODES: Shared Semiotic Resources
We saw how a game designer selects, creates and composes procedural semiotic resources in Mission-
Maker to express ideas and represent meanings. I also mentioned that, in order to further investigate
the particularities of this process, it is useful to compare it to other languages and mediums - or
MODES - which are more established and mature. This will be elaborated further in the following
pages, by identifying and comparing shared semiotic resources between the game design process in
MissionMaker and the other creative activities from the Playing Beowulf pilot workshop.

This analysis will be based on the consideration of Procedurality as a MODE, as well as on the
significance behind choice of MODE, mentioned previously in this text, in the Framework and
Methodology section (p. 16).

What follows is an initial investigation on the parallels between digital game design and other
languages and mediums with similar expressive strategies and creative process. As we will see,
some of these intersections are more apparent than others, and some have a greater influence or
effect in the actual productions, while in others this is more subtle, or even non-existent. The
intention is that the ideas presented here may be the starting point for further elaborations on this
subject.

MODE as Groups of Semiotic Resources

The argument that I will elaborate on here is that the different languages, practices, artforms or
MODES can be described via the semiotic resources on which their respective creative processes are
based on, as well as on their particular grammar for composing these resources.

As seen before, semiotic resources may exist in a variety of different levels of abstraction, according
to the particularities of each MODE, as well as according to the perspective and approach from each
author or creator.

44



The following diagram (fig. 15) illustrates this, using as reference the languages explored in the
workshop, including the game design activity. The dots represent the different existing semiotic
resources, and each grouping represents the respective languages, such as drawing, film or drama -
intersections between the groupings illustrate the shared resources. Although the dots may represent
static semiotic resources as well, the focus here will be on the procedural ones, since this is the main
topic of this study.

Figure 15: Semiotic Resources: groupings by language (or MODE)

This diagram is a greatly simplified representation of these elements and relationships. For example,
regarding the semiotic resources (the dots), the diagram doesn’t differentiate among the different
types (static or procedural), neither among different levels of abstraction. Also, the number of dots
represented in the diagram does not reflect the actual quantity of resources involved in each language,
or the intersections between them. Not only is the actual number of resources much higher than
what is represented in the diagram, in principle they should be unlimited, specially considering that
resources can exist in different levels of abstraction.

These groupings are not meant to be rigid. Although there are certain sets of resources which are
usually associated with each language, the groups are dynamic and flexible (also, groups different
than the ones presented here could be defined as well). Therefore, the actual groupings may vary
according to different perspectives, as well as to the particular creator or artist.

The intersections between the groups are also represented in the diagram in a very simplified manner,
since each MODE usually shares semiotic resources with many of the other MODES (instead of only
one or two, as shown in the diagram). For example, while color is a semiotic resource shared by
many languages, texture is present in fewer MODES. The abstraction of functions (such as the
ones mentioned before) in a programming language are semiotic resources shared with even fewer
MODES.

Regarding levels of abstraction, on one hand, resources in lower levels tend to be shared between
more MODES, since their usage tends to be less specific in terms of application and thematic - this
is the case of fundamental properties, such as color and texture, for example. On the other hand,
certain higher-level abstractions may also be shared among many MODES, in the cases in which they
are not specific to particular medium or support - such as the idea of concept models, mentioned
before (which can be applied outside of digital media as well, for example).

45



Shared Semiotic Resources

During the Playing Beowulf workshop the participants were exposed to a variety of languages, and
encouraged to act creatively using them, in a very short time span. Often the activities required two
or more of these artforms to be combined or integrated in some way. This allowed the participants
to gain a very unique perspective on each one of these approaches, as well as to the general concepts
of language and creative expression.

In my conversations with them, many had opinions regarding the particularities and similarities
between the different mediums and languages, both traditional and digital. In the following pages I
will present some of these discussions.

As mentioned before, the kind of comparisons suggested here are useful for illustrating and under-
standing the concept of semiotic resources, as well as the role of particular semiotic resources in each
language.

Since most of the participants are student teachers from the English and Drama course, and almost
all of them teach Creative Writing or some other closely related subject, the medium of literature
and verbal language was one of the most common examples used in comparing game design (and
digital media) with more traditional approaches.49

Niamh Hickey, when comparing the creative process in MissionMaker with the activity of creative
writing, pointed out that game design allows for much more immediate results. She argued that a
writer always starts a new work from scratch, not only because the process usually begins literally
with a blank piece of paper, but also because the whole world logic needs to be described and defined,
as well as the structure and style of the narrative. In a creative environment such as MissionMaker,
on the other hand, Hickey believes you get most of that by default.50

What I found, however, is that in both cases the same process happens, only in different ways. The
writer does not actually start his work "from scratch", at least not in the sense of the comparison
presented above, since a great part of the work already happens even before picking up the pencil
(or computer). Also, all of the "default" elements mentioned in regard to MissionMaker had to be
created by someone - in this case, the designers and programmers of the software.

Therefore, the difference pointed out by Hickey exists only from the perspective of the game designer
using MissionMaker (or a similar type of software). From the point of view of the MODES themselves,
however - game design and creative writing -, both share the same "world-building" process, which
can be described as a particular set of semiotic resources.

The designers and programmers of MissionMaker (the software itself) defined the world’s logic, and
many of the rules, behaviours and even assets involved in it. Similarly, a writer is responsible to
decide how the world inside a particular story will work. While the low-level semiotic resources used
in each case may certainly differ (the programmer uses functions and variables, while the writer uses

49Another medium that was mentioned by many of the participants was Cinema, a popular artform, which makes it
easier to relate, exemplify and find common references and expressive strategies to compare to digital media.

50This can be related to the idea of the game engine, discussed earlier in this text (p. 38).

46



sentences and words), resources in higher levels of abstractions are the same. This includes, for
example the description of characters and locations, as well as the definition of relationships and
rules through which the systems will work.51

Harriet Piercy mentioned the similarities between game design and the improvisational drama exer-
cises done in the workshop. In that exercise, the participants didn’t receive a script with a detailed
description of their lines and actions in each particular scene. They received more general instructions,
such as to react to a certain situation, or to act in a way that a certain character would. Although in
a way these are also scripts, they don’t represent linear static instructions. They represent behaviours
and processes instead.

That is, in that exercise the instructor was in a way "programming" the actors, in a process similar to
that of a game designer programming characters in their games. Again, the shared resources in this
case are the ones in a higher level of abstraction - after all, people can’t literally be "programmed",
at least not in the same way as computers.

Related to this topic, Niamh pointed out that in many of the activities from the first day of the
workshop the participants were placed as active characters in the story world. This helped them in
getting into the mindset necessary for designing a game, since this is a medium usually centered
around the notion of an active central character controlled by the player, in which his actions and
decisions define or influence the outcome of the experience. This suggests the existence of shared
semiotic resources related to this particular aspect of the experience.

The idea of shared semiotic resources between MODES can also be used to illustrate an observation by
one of the participants of the workshop, Laura Scott. She suggests one possible model for integrating
game design and creative writing in an educational environment, by having both activities happening
almost simultaneously, allowing constant feedback and insights between the two approaches.

For example, a student could create a game, then write a script (similar to a theater play or movie)
that another student could use to interact with the game - what Laura proposes can also be related
to the concept of a videogame walkthrough (BURN In CARR et al, 2014). This process could then
inform a new round of game design, script writing and interaction, gradually evolving the narrative
associated with this particular experience. By requiring these two approaches to be pursued practically
at the same time and in the same context, Laura believes this could cause these drastically distinct
languages to interact in the student’s minds in ways that they wouldn’t otherwise. This could bring
new ideas and ways to use these languages, both individually and as a cohesive unit.

In this exercise proposed by Laura, there is always a bridge between the different mediums, which
mostly consists of their shared semiotic resources. For example, throughout the entire process, the
characters, locations and relationships are the same (except when the game designer chooses to

51In both cases, the work may not even involve a "world" in a strict sense, or even a "story", for that matter.
Also, the comparison proposed here is in relation to elements sharing the same expressive purpose in the respective
languages. So, although games may also contain "words" and "sentences", they don’t participate in the same type of
meaning expressed via the procedural elements, for example.

47



update or adjust them - which is the very purpose of the exercise), while resources specific to each
language (such as the linear structure of verbal language, in contrast to the rule-based logic of the
game) vary.

As mentioned before, this is an initial investigation on comparing MODES considering the shared
semiotic resources between them. There are many other aspects and elements that can be considered
in further elaborations, such as comparing the role of composition among different MODES, as well
as how their overall creative approach relates to each other.

The languages and mediums used in the comparisons allow for interesting insights and discussions,
mainly because of the associations resulted from the activities in the workshop. However, these are
not necessarily the languages that could provide the most significant comparisons to the game design
activity. Therefore, this investigation could benefit from further analysis considering comparisons with
languages and practices more closely related to the creative process in digital media, such as the
aforementioned traditional forms of Conceptual and Kinetic Art, which shares many elements and
expressive strategies from the procedural approach (p. 14).

48



5 Conclusion and Further Research

In this text I hope to have provided a useful perspective on how digital media can be used to produce
meaning via procedural expressive strategies. This was illustrated by some case studies, such as
Andrew Smith’s game, in which he used particular behaviours for the representation of Grendel’s
mother as a peaceful but strong character, or Tracey Matthews’ game, which communicated the
relationship of loyalty between the warriors and Beowulf via the definition of simple rules.

Despite their simplicity, these examples demonstrate the potential of an approach which is unique
to this medium, fundamentally distinct from any previous traditional language or form, requiring a
different way of thinking about representation and expression, not only from the perspective of the
creators, but also of researchers and critics, as well as the audience.

I should reiterate that the analysis of the MissionMaker software done in this study is very specific,
with focus on the procedural semiotic resources, as opposed to static elements such as the use of
images, text, sound and music. As mentioned before, these static elements are a fundamental part
of most of the games analyzed in this study. Partly this is because of the fact that, for most of the
participants of the workshop, this was their first experience creating games. However, this is also
related to the broader notion that the expressive potential of procedural authorship is still relatively
unexplored, as discussed previously in this text.

This shouldn’t be interpreted as a criticism to the games or their expressive qualities, neither
to the software itself. First because, as mentioned before, the limited functionalities available
in MissionMaker are designed in order to allow for a more accessible experience, targeted for
inexperienced game designers and computer users. Second, because the fact that procedural semiotic
resources are not the predominant mode of expression in these games does not mean that there is
no meaning potential being communicated via the static resources.

A significant finding that resulted from this study is that, despite the discrete and systematic nature
of digital media, the fact that it acts as a metamedium means that there are no predefined notations
regarding the language itself, through which creators and designers may express themselves and create
meaning. In other words, although the code that underlies the operations of a digital computer is
strict, and needs to follow the guidelines and rules of particular programming languages or hardware
devices, the actual systems that can be created by them have no preestablished grammars.

The creative act of writing code shares many similarities to the structure of languages with well
defined notation, such as verbal language or music. However, the actual moment of execution, or
the possible outputs, of a computer program have more similarities to less structured languages such
as painting, dance, conceptual art, drama and improvisational practices.

49



The importance of examining this particular aspect of digital media is to contribute to a better
understanding of the expressive potential of this medium and of how it relates to (and, more
importantly, distinguishes itself from) other traditional forms.

Initiatives to bring programming and game design to schools in an interdisciplinary context, such
as Scratch (MIT) and MissionMaker, tend to focus on the more technical aspects and applications,
instead of on creativity and expression. Programming tends to be taught in the context of Computer
Science, as opposed to Art or Cultural Studies. Using an analogy between programming and verbal
language, it is as if there were many classes for learning the grammar, but few for "creative writing".52

Note that the focus of analysis here is the use of game design and procedurality for expressive and
representational purposes. In that sense, it differs from the topic of gamification in education, which
deals with the use of game design for learning other subjects, including programming.

Regardless, procedural literacy is an issue even among experienced programmers and creators in this
medium. As mentioned before, although there is no "wrong" way of using or enjoying digital media,
the unique expressive potential of this medium is still relatively unexplored and misunderstood, both
by creators and the audience.

This study is part of a broader PhD research I am currently developing, which analyzes procedural
authorship in a more general sense, considering not only digital games but also other types of
productions based on procedural strategies of expression. Through this research I hope to contribute
to the understanding of digital media as an expressive medium, by providing concepts and theoretical
tools for investigating how artists and creators use computers to produce a type of meaning potential
that is unique, different than in any other traditional medium or language.53

52I intentionally avoided the term "creative coding" here, since it is often used in reference to a creative approach
to the act of coding itself, instead of to the creative uses or applications of coding.

53This research follows the theories developed in my previous masters dissertation (FERREIRA, 2011).
More information at my research blog: www.7luas.com.br/research

50



References

Note: all online references were accessed and verified at July 2015.

ALBERRO, Alexander; STIMSON, Blake (Ed.). Conceptual Art: a Critical Anthology. Massachusetts: The
MIT Press, 1999.

BOGOST, Ian. Unit Operations: an approach to videogame criticism. MIT Press, 2006.

BURN, Andrew. ’The kineikonic mode: towards a multimodal approach to moving-image media’. in The
Routledge handbook of multimodal analysis. 2nd ed. edn, Routledge. 2013 pp. 373-383.

COHEN, Harold. Parallel to perception: Some notes on the problem of machine-generated art. Computer
Studies, v. 4, p. 124-133, 1973.

CRAWFORD, Chris. Process intensity. Journal of Computer Game Design 1(5), 1987.

FERREIRA, Daniel Peixoto. Poéticas procedurais: um olhar sobre o pensamento artístico e a expressividade
do meio digital. Masters dissertation (portuguese). ECA/USP. São Paulo, 2011.

______. Beowulf Workshop: A MissionMaker Case Study. Nov. 2014a.
URL: darecollaborative.net/2015/03/11/playing-beowulf-gaming-the-library

______. Beowulf Workshop: MissionMaker Conversations. Dec. 2014b.
URL: darecollaborative.net/2015/03/11/playing-beowulf-gaming-the-library

JEWITT, Carey (Ed.). The Routledge Handbook of Multimodal Analysis. Routledge. 2014.

KAY, Alan. Computer Software. Scientific American. vol. 251. num. 3. pp. 52-59, September, 1984.

LEEUWEN, Theo Van. Introducing Social Semiotics. Psychology Press, 2005

MANOVICH, Lev. The Language of New Media. Massachusetts: The MIT Press, 2001.

MATEAS, Michael; STERN, Andrew. Procedural authorship: A case-study of the interactive drama façade.
In: Digital Arts and Culture: Digital Experience: Design, Aesthetics, Practice (DAC 2005) Proceedings.
Copenhagen, Denmark, 2005.

______. Semiotic considerations in an artificial intelligence-based art practice. Dichtung Digital: Journal
on Digital Aesthetics, n. 29, 2003a. URL: www.dichtung-digital.de/2003/issue/3/Mateas.htm

______. Expressive AI: Games and artificial intelligence. In: Level Up: Digital Games Research Conference
Proceedings. Utrecht, Netherlands, Nov. 2003b.

MURRAY, Janet Horowitz. Hamlet on the Holodeck: The Future of Narrative in Cyberspace. Simon and
Schuster, 1997.

REAS, Casey. Interview at Electric Objects. Feb. 2015.
URL: zine.electricobjects.com/interviews/casey-reas

SICART, Miguel. Against Procedurality. Game Studies. Vol. 11, Issue 3. December 2011.
URL: gamestudies.org/1103/articles/sicart_ap

TONSKI, Jacob. Prix Ars Electronica 2014. Artist’s statement. Digital Document. 2014.
URL: prix2014.aec.at/prixwinner/13363/

WARDRIP-FRUIN, Noah. Expressive Processing: On Process-Intensive Literature and Digital Media. PhD
thesis, Special Graduate Studies, Brown University, Providence, Rhode Island. May, 2006.

51



Software and Technology
Actionscript (Macromedia Flash)

MissionMaker (London Knowledge Lab, UCL Institute of Education)

Processing (Ben Fry and Casey Reas, 2001)

Scratch (MIT)

Digital Productions, Videogames and Artwork
Aaron (Harold Cohen, 1973-)

Balance From Within (Jacob Tonski, 2012)

Cutthroat Capitalism (WIRED, 2009)

Façade (Michael Mateas and Andrew Stern, 2005)

Far (Random Dance, 2011)

For All Seasons (Andreas Müller, 2004)

Hana (Andreas Müller, 2008)

Oregon Trail, The (MECC, 1971)

Pac-Man (Namco, 1980)

Sand Installation: Ryo-Anji (Jean-Pierre Hébert, 2011)

Spelunky (Derek Yu, 2008)

Super Mario Bros. (Nintendo, 1985)

Traditional Productions and Artwork
Beowulf (modern English translation by Frances B. Grummere).
URL: www.poetryfoundation.org/poem/180445

Cent mille milliards de poèmes (Raymond Queneau, 1961)

Choose Your Own Adventure (series, Bantam Books).

One Hole in the Ground Approximately 1’ x 1’ x 1’ /
One Gallon Water Based White Paint Poured into this Hole (Lawrence Weiner, 1968)

Terminal, The (Steven Spielberg, 2004)

Theater of the Oppressed (Augusto Boal,1960s-)

52



Index

The following is a brief index to some relevant terms and concepts in this text (this is not a list of
all instances of these terms, only their main occurrences).

Conditionals (or Conditional Statements), 34

Engine (Game, MissionMaker), 38

Interactivity (Interaction), 10

Levels of Abstraction (High, Low), 23

Multimodal Analysis (MODE), 16

Procedurality, 6

Procedural Semiotic Resources, 23

in MissionMaker, 29

Procedural Intensity (or Process Intensity), 19

Rules. See Conditionals

Semiotic Resource, 16

Variables, 32

[End of Document]

53


